Evaluate
\frac{150}{101}\approx 1.485148515
Factor
\frac{2 \cdot 3 \cdot 5 ^ {2}}{101} = 1\frac{49}{101} = 1.4851485148514851
Share
Copied to clipboard
\frac{4-1}{2+\frac{3}{150}}
Divide 15 by 15 to get 1.
\frac{3}{2+\frac{3}{150}}
Subtract 1 from 4 to get 3.
\frac{3}{2+\frac{1}{50}}
Reduce the fraction \frac{3}{150} to lowest terms by extracting and canceling out 3.
\frac{3}{\frac{100}{50}+\frac{1}{50}}
Convert 2 to fraction \frac{100}{50}.
\frac{3}{\frac{100+1}{50}}
Since \frac{100}{50} and \frac{1}{50} have the same denominator, add them by adding their numerators.
\frac{3}{\frac{101}{50}}
Add 100 and 1 to get 101.
3\times \frac{50}{101}
Divide 3 by \frac{101}{50} by multiplying 3 by the reciprocal of \frac{101}{50}.
\frac{3\times 50}{101}
Express 3\times \frac{50}{101} as a single fraction.
\frac{150}{101}
Multiply 3 and 50 to get 150.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}