Evaluate
\frac{2\left(x-3\right)}{x+2}
Expand
\frac{2\left(x-3\right)}{x+2}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 4 - \frac { 12 } { x + 2 } } { 2 + \frac { 4 } { x - 3 } }
Share
Copied to clipboard
\frac{\frac{4\left(x+2\right)}{x+2}-\frac{12}{x+2}}{2+\frac{4}{x-3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x+2}{x+2}.
\frac{\frac{4\left(x+2\right)-12}{x+2}}{2+\frac{4}{x-3}}
Since \frac{4\left(x+2\right)}{x+2} and \frac{12}{x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x+8-12}{x+2}}{2+\frac{4}{x-3}}
Do the multiplications in 4\left(x+2\right)-12.
\frac{\frac{4x-4}{x+2}}{2+\frac{4}{x-3}}
Combine like terms in 4x+8-12.
\frac{\frac{4x-4}{x+2}}{\frac{2\left(x-3\right)}{x-3}+\frac{4}{x-3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-3}{x-3}.
\frac{\frac{4x-4}{x+2}}{\frac{2\left(x-3\right)+4}{x-3}}
Since \frac{2\left(x-3\right)}{x-3} and \frac{4}{x-3} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-4}{x+2}}{\frac{2x-6+4}{x-3}}
Do the multiplications in 2\left(x-3\right)+4.
\frac{\frac{4x-4}{x+2}}{\frac{2x-2}{x-3}}
Combine like terms in 2x-6+4.
\frac{\left(4x-4\right)\left(x-3\right)}{\left(x+2\right)\left(2x-2\right)}
Divide \frac{4x-4}{x+2} by \frac{2x-2}{x-3} by multiplying \frac{4x-4}{x+2} by the reciprocal of \frac{2x-2}{x-3}.
\frac{4\left(x-3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(x-3\right)}{x+2}
Cancel out 2\left(x-1\right) in both numerator and denominator.
\frac{2x-6}{x+2}
Expand the expression.
\frac{\frac{4\left(x+2\right)}{x+2}-\frac{12}{x+2}}{2+\frac{4}{x-3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x+2}{x+2}.
\frac{\frac{4\left(x+2\right)-12}{x+2}}{2+\frac{4}{x-3}}
Since \frac{4\left(x+2\right)}{x+2} and \frac{12}{x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x+8-12}{x+2}}{2+\frac{4}{x-3}}
Do the multiplications in 4\left(x+2\right)-12.
\frac{\frac{4x-4}{x+2}}{2+\frac{4}{x-3}}
Combine like terms in 4x+8-12.
\frac{\frac{4x-4}{x+2}}{\frac{2\left(x-3\right)}{x-3}+\frac{4}{x-3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-3}{x-3}.
\frac{\frac{4x-4}{x+2}}{\frac{2\left(x-3\right)+4}{x-3}}
Since \frac{2\left(x-3\right)}{x-3} and \frac{4}{x-3} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-4}{x+2}}{\frac{2x-6+4}{x-3}}
Do the multiplications in 2\left(x-3\right)+4.
\frac{\frac{4x-4}{x+2}}{\frac{2x-2}{x-3}}
Combine like terms in 2x-6+4.
\frac{\left(4x-4\right)\left(x-3\right)}{\left(x+2\right)\left(2x-2\right)}
Divide \frac{4x-4}{x+2} by \frac{2x-2}{x-3} by multiplying \frac{4x-4}{x+2} by the reciprocal of \frac{2x-2}{x-3}.
\frac{4\left(x-3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(x-3\right)}{x+2}
Cancel out 2\left(x-1\right) in both numerator and denominator.
\frac{2x-6}{x+2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}