Evaluate
-\frac{z^{8}}{5}
Differentiate w.r.t. z
-\frac{8z^{7}}{5}
Share
Copied to clipboard
\left(4z^{2}\right)^{1}\times \frac{1}{-20z^{-6}}
Use the rules of exponents to simplify the expression.
4^{1}\left(z^{2}\right)^{1}\times \frac{1}{-20}\times \frac{1}{z^{-6}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
4^{1}\times \frac{1}{-20}\left(z^{2}\right)^{1}\times \frac{1}{z^{-6}}
Use the Commutative Property of Multiplication.
4^{1}\times \frac{1}{-20}z^{2}z^{-6\left(-1\right)}
To raise a power to another power, multiply the exponents.
4^{1}\times \frac{1}{-20}z^{2}z^{6}
Multiply -6 times -1.
4^{1}\times \frac{1}{-20}z^{2+6}
To multiply powers of the same base, add their exponents.
4^{1}\times \frac{1}{-20}z^{8}
Add the exponents 2 and 6.
4\times \frac{1}{-20}z^{8}
Raise 4 to the power 1.
4\left(-\frac{1}{20}\right)z^{8}
Raise -20 to the power -1.
-\frac{1}{5}z^{8}
Multiply 4 times -\frac{1}{20}.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{4}{-20}z^{2-\left(-6\right)})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}z}(-\frac{1}{5}z^{8})
Do the arithmetic.
8\left(-\frac{1}{5}\right)z^{8-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{8}{5}z^{7}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}