Solve for x
x\leq \frac{13}{5}
Graph
Share
Copied to clipboard
2\times 4\left(1+x\right)-6\leq 3\left(5+x\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2. Since 6 is positive, the inequality direction remains the same.
8\left(1+x\right)-6\leq 3\left(5+x\right)
Multiply 2 and 4 to get 8.
8+8x-6\leq 3\left(5+x\right)
Use the distributive property to multiply 8 by 1+x.
2+8x\leq 3\left(5+x\right)
Subtract 6 from 8 to get 2.
2+8x\leq 15+3x
Use the distributive property to multiply 3 by 5+x.
2+8x-3x\leq 15
Subtract 3x from both sides.
2+5x\leq 15
Combine 8x and -3x to get 5x.
5x\leq 15-2
Subtract 2 from both sides.
5x\leq 13
Subtract 2 from 15 to get 13.
x\leq \frac{13}{5}
Divide both sides by 5. Since 5 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}