Solve for z
z=-11
Share
Copied to clipboard
\left(2z+9\right)\times 4-\left(z-2\right)\times 9+\left(2z+9\right)\times 5=0
Variable z cannot be equal to any of the values -\frac{9}{2},2 since division by zero is not defined. Multiply both sides of the equation by \left(z-2\right)\left(2z+9\right), the least common multiple of z-2,2z+9.
8z+36-\left(z-2\right)\times 9+\left(2z+9\right)\times 5=0
Use the distributive property to multiply 2z+9 by 4.
8z+36-\left(9z-18\right)+\left(2z+9\right)\times 5=0
Use the distributive property to multiply z-2 by 9.
8z+36-9z+18+\left(2z+9\right)\times 5=0
To find the opposite of 9z-18, find the opposite of each term.
-z+36+18+\left(2z+9\right)\times 5=0
Combine 8z and -9z to get -z.
-z+54+\left(2z+9\right)\times 5=0
Add 36 and 18 to get 54.
-z+54+10z+45=0
Use the distributive property to multiply 2z+9 by 5.
9z+54+45=0
Combine -z and 10z to get 9z.
9z+99=0
Add 54 and 45 to get 99.
9z=-99
Subtract 99 from both sides. Anything subtracted from zero gives its negation.
z=\frac{-99}{9}
Divide both sides by 9.
z=-11
Divide -99 by 9 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}