Solve for x
x=\frac{y}{y+1}
y\neq 0\text{ and }y\neq -1
Solve for y
y=-\frac{x}{x-1}
x\neq 0\text{ and }x\neq 1
Graph
Share
Copied to clipboard
y\times 4-x\times 4=4xy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
y\times 4-x\times 4-4xy=0
Subtract 4xy from both sides.
-x\times 4-4xy=-y\times 4
Subtract y\times 4 from both sides. Anything subtracted from zero gives its negation.
-4x-4xy=-y\times 4
Multiply -1 and 4 to get -4.
-4x-4xy=-4y
Multiply -1 and 4 to get -4.
\left(-4-4y\right)x=-4y
Combine all terms containing x.
\left(-4y-4\right)x=-4y
The equation is in standard form.
\frac{\left(-4y-4\right)x}{-4y-4}=-\frac{4y}{-4y-4}
Divide both sides by -4-4y.
x=-\frac{4y}{-4y-4}
Dividing by -4-4y undoes the multiplication by -4-4y.
x=\frac{y}{y+1}
Divide -4y by -4-4y.
x=\frac{y}{y+1}\text{, }x\neq 0
Variable x cannot be equal to 0.
y\times 4-x\times 4=4xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
y\times 4-x\times 4-4xy=0
Subtract 4xy from both sides.
y\times 4-4xy=x\times 4
Add x\times 4 to both sides. Anything plus zero gives itself.
\left(4-4x\right)y=x\times 4
Combine all terms containing y.
\left(4-4x\right)y=4x
The equation is in standard form.
\frac{\left(4-4x\right)y}{4-4x}=\frac{4x}{4-4x}
Divide both sides by 4-4x.
y=\frac{4x}{4-4x}
Dividing by 4-4x undoes the multiplication by 4-4x.
y=\frac{x}{1-x}
Divide 4x by 4-4x.
y=\frac{x}{1-x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}