Solve for x
x=3
Graph
Share
Copied to clipboard
4=x\times \frac{5}{\frac{15}{4}}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
4=x\times 5\times \frac{4}{15}
Divide 5 by \frac{15}{4} by multiplying 5 by the reciprocal of \frac{15}{4}.
4=x\times \frac{5\times 4}{15}
Express 5\times \frac{4}{15} as a single fraction.
4=x\times \frac{20}{15}
Multiply 5 and 4 to get 20.
4=x\times \frac{4}{3}
Reduce the fraction \frac{20}{15} to lowest terms by extracting and canceling out 5.
x\times \frac{4}{3}=4
Swap sides so that all variable terms are on the left hand side.
x=4\times \frac{3}{4}
Multiply both sides by \frac{3}{4}, the reciprocal of \frac{4}{3}.
x=3
Cancel out 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}