Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4-\left(x+5\right)\left(x+5\right)=\left(x-5\right)\left(x-5\right)+\left(x-5\right)\left(x+5\right)\left(-3\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x^{2}-25,x-5,x+5.
4-\left(x+5\right)^{2}=\left(x-5\right)\left(x-5\right)+\left(x-5\right)\left(x+5\right)\left(-3\right)
Multiply x+5 and x+5 to get \left(x+5\right)^{2}.
4-\left(x+5\right)^{2}=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
Multiply x-5 and x-5 to get \left(x-5\right)^{2}.
4-\left(x^{2}+10x+25\right)=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
4-x^{2}-10x-25=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
To find the opposite of x^{2}+10x+25, find the opposite of each term.
-21-x^{2}-10x=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
Subtract 25 from 4 to get -21.
-21-x^{2}-10x=x^{2}-10x+25+\left(x-5\right)\left(x+5\right)\left(-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
-21-x^{2}-10x=x^{2}-10x+25+\left(x^{2}-25\right)\left(-3\right)
Use the distributive property to multiply x-5 by x+5 and combine like terms.
-21-x^{2}-10x=x^{2}-10x+25-3x^{2}+75
Use the distributive property to multiply x^{2}-25 by -3.
-21-x^{2}-10x=-2x^{2}-10x+25+75
Combine x^{2} and -3x^{2} to get -2x^{2}.
-21-x^{2}-10x=-2x^{2}-10x+100
Add 25 and 75 to get 100.
-21-x^{2}-10x+2x^{2}=-10x+100
Add 2x^{2} to both sides.
-21+x^{2}-10x=-10x+100
Combine -x^{2} and 2x^{2} to get x^{2}.
-21+x^{2}-10x+10x=100
Add 10x to both sides.
-21+x^{2}=100
Combine -10x and 10x to get 0.
-21+x^{2}-100=0
Subtract 100 from both sides.
-121+x^{2}=0
Subtract 100 from -21 to get -121.
\left(x-11\right)\left(x+11\right)=0
Consider -121+x^{2}. Rewrite -121+x^{2} as x^{2}-11^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=11 x=-11
To find equation solutions, solve x-11=0 and x+11=0.
4-\left(x+5\right)\left(x+5\right)=\left(x-5\right)\left(x-5\right)+\left(x-5\right)\left(x+5\right)\left(-3\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x^{2}-25,x-5,x+5.
4-\left(x+5\right)^{2}=\left(x-5\right)\left(x-5\right)+\left(x-5\right)\left(x+5\right)\left(-3\right)
Multiply x+5 and x+5 to get \left(x+5\right)^{2}.
4-\left(x+5\right)^{2}=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
Multiply x-5 and x-5 to get \left(x-5\right)^{2}.
4-\left(x^{2}+10x+25\right)=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
4-x^{2}-10x-25=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
To find the opposite of x^{2}+10x+25, find the opposite of each term.
-21-x^{2}-10x=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
Subtract 25 from 4 to get -21.
-21-x^{2}-10x=x^{2}-10x+25+\left(x-5\right)\left(x+5\right)\left(-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
-21-x^{2}-10x=x^{2}-10x+25+\left(x^{2}-25\right)\left(-3\right)
Use the distributive property to multiply x-5 by x+5 and combine like terms.
-21-x^{2}-10x=x^{2}-10x+25-3x^{2}+75
Use the distributive property to multiply x^{2}-25 by -3.
-21-x^{2}-10x=-2x^{2}-10x+25+75
Combine x^{2} and -3x^{2} to get -2x^{2}.
-21-x^{2}-10x=-2x^{2}-10x+100
Add 25 and 75 to get 100.
-21-x^{2}-10x+2x^{2}=-10x+100
Add 2x^{2} to both sides.
-21+x^{2}-10x=-10x+100
Combine -x^{2} and 2x^{2} to get x^{2}.
-21+x^{2}-10x+10x=100
Add 10x to both sides.
-21+x^{2}=100
Combine -10x and 10x to get 0.
x^{2}=100+21
Add 21 to both sides.
x^{2}=121
Add 100 and 21 to get 121.
x=11 x=-11
Take the square root of both sides of the equation.
4-\left(x+5\right)\left(x+5\right)=\left(x-5\right)\left(x-5\right)+\left(x-5\right)\left(x+5\right)\left(-3\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x^{2}-25,x-5,x+5.
4-\left(x+5\right)^{2}=\left(x-5\right)\left(x-5\right)+\left(x-5\right)\left(x+5\right)\left(-3\right)
Multiply x+5 and x+5 to get \left(x+5\right)^{2}.
4-\left(x+5\right)^{2}=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
Multiply x-5 and x-5 to get \left(x-5\right)^{2}.
4-\left(x^{2}+10x+25\right)=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
4-x^{2}-10x-25=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
To find the opposite of x^{2}+10x+25, find the opposite of each term.
-21-x^{2}-10x=\left(x-5\right)^{2}+\left(x-5\right)\left(x+5\right)\left(-3\right)
Subtract 25 from 4 to get -21.
-21-x^{2}-10x=x^{2}-10x+25+\left(x-5\right)\left(x+5\right)\left(-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
-21-x^{2}-10x=x^{2}-10x+25+\left(x^{2}-25\right)\left(-3\right)
Use the distributive property to multiply x-5 by x+5 and combine like terms.
-21-x^{2}-10x=x^{2}-10x+25-3x^{2}+75
Use the distributive property to multiply x^{2}-25 by -3.
-21-x^{2}-10x=-2x^{2}-10x+25+75
Combine x^{2} and -3x^{2} to get -2x^{2}.
-21-x^{2}-10x=-2x^{2}-10x+100
Add 25 and 75 to get 100.
-21-x^{2}-10x+2x^{2}=-10x+100
Add 2x^{2} to both sides.
-21+x^{2}-10x=-10x+100
Combine -x^{2} and 2x^{2} to get x^{2}.
-21+x^{2}-10x+10x=100
Add 10x to both sides.
-21+x^{2}=100
Combine -10x and 10x to get 0.
-21+x^{2}-100=0
Subtract 100 from both sides.
-121+x^{2}=0
Subtract 100 from -21 to get -121.
x^{2}-121=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-121\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-121\right)}}{2}
Square 0.
x=\frac{0±\sqrt{484}}{2}
Multiply -4 times -121.
x=\frac{0±22}{2}
Take the square root of 484.
x=11
Now solve the equation x=\frac{0±22}{2} when ± is plus. Divide 22 by 2.
x=-11
Now solve the equation x=\frac{0±22}{2} when ± is minus. Divide -22 by 2.
x=11 x=-11
The equation is now solved.