Evaluate
\frac{6}{x^{2}-1}
Expand
\frac{6}{x^{2}-1}
Graph
Share
Copied to clipboard
\frac{4}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{2\left(x-1\right)}-\frac{x+3}{2x+2}
Factor x^{2}-1. Factor 2x-2.
\frac{4\times 2}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and 2\left(x-1\right) is 2\left(x-1\right)\left(x+1\right). Multiply \frac{4}{\left(x-1\right)\left(x+1\right)} times \frac{2}{2}. Multiply \frac{x+1}{2\left(x-1\right)} times \frac{x+1}{x+1}.
\frac{4\times 2+\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2x+2}
Since \frac{4\times 2}{2\left(x-1\right)\left(x+1\right)} and \frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{8+x^{2}+x+x+1}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2x+2}
Do the multiplications in 4\times 2+\left(x+1\right)\left(x+1\right).
\frac{9+x^{2}+2x}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2x+2}
Combine like terms in 8+x^{2}+x+x+1.
\frac{9+x^{2}+2x}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}
Factor 2x+2.
\frac{9+x^{2}+2x}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-1\right)\left(x+1\right) and 2\left(x+1\right) is 2\left(x-1\right)\left(x+1\right). Multiply \frac{x+3}{2\left(x+1\right)} times \frac{x-1}{x-1}.
\frac{9+x^{2}+2x-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Since \frac{9+x^{2}+2x}{2\left(x-1\right)\left(x+1\right)} and \frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9+x^{2}+2x-x^{2}+x-3x+3}{2\left(x-1\right)\left(x+1\right)}
Do the multiplications in 9+x^{2}+2x-\left(x+3\right)\left(x-1\right).
\frac{12}{2\left(x-1\right)\left(x+1\right)}
Combine like terms in 9+x^{2}+2x-x^{2}+x-3x+3.
\frac{12}{2x^{2}-2}
Expand 2\left(x-1\right)\left(x+1\right).
\frac{4}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{2\left(x-1\right)}-\frac{x+3}{2x+2}
Factor x^{2}-1. Factor 2x-2.
\frac{4\times 2}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and 2\left(x-1\right) is 2\left(x-1\right)\left(x+1\right). Multiply \frac{4}{\left(x-1\right)\left(x+1\right)} times \frac{2}{2}. Multiply \frac{x+1}{2\left(x-1\right)} times \frac{x+1}{x+1}.
\frac{4\times 2+\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2x+2}
Since \frac{4\times 2}{2\left(x-1\right)\left(x+1\right)} and \frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{8+x^{2}+x+x+1}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2x+2}
Do the multiplications in 4\times 2+\left(x+1\right)\left(x+1\right).
\frac{9+x^{2}+2x}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2x+2}
Combine like terms in 8+x^{2}+x+x+1.
\frac{9+x^{2}+2x}{2\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}
Factor 2x+2.
\frac{9+x^{2}+2x}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-1\right)\left(x+1\right) and 2\left(x+1\right) is 2\left(x-1\right)\left(x+1\right). Multiply \frac{x+3}{2\left(x+1\right)} times \frac{x-1}{x-1}.
\frac{9+x^{2}+2x-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Since \frac{9+x^{2}+2x}{2\left(x-1\right)\left(x+1\right)} and \frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9+x^{2}+2x-x^{2}+x-3x+3}{2\left(x-1\right)\left(x+1\right)}
Do the multiplications in 9+x^{2}+2x-\left(x+3\right)\left(x-1\right).
\frac{12}{2\left(x-1\right)\left(x+1\right)}
Combine like terms in 9+x^{2}+2x-x^{2}+x-3x+3.
\frac{12}{2x^{2}-2}
Expand 2\left(x-1\right)\left(x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}