Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
\left(x^{2}-4\right)\times 4+15+7x=\left(-x^{2}+1\right)\times 2
Variable x cannot be equal to any of the values -2,-1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{2}-1,x^{4}-5x^{2}+4,4-x^{2}.
4x^{2}-16+15+7x=\left(-x^{2}+1\right)\times 2
Use the distributive property to multiply x^{2}-4 by 4.
4x^{2}-1+7x=\left(-x^{2}+1\right)\times 2
Add -16 and 15 to get -1.
4x^{2}-1+7x=-2x^{2}+2
Use the distributive property to multiply -x^{2}+1 by 2.
4x^{2}-1+7x+2x^{2}=2
Add 2x^{2} to both sides.
6x^{2}-1+7x=2
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
6x^{2}-1+7x-2=0
Subtract 2 from both sides.
6x^{2}-3+7x=0
Subtract 2 from -1 to get -3.
6x^{2}+7x-3=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=7 ab=6\left(-3\right)=-18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
-1,18 -2,9 -3,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18.
-1+18=17 -2+9=7 -3+6=3
Calculate the sum for each pair.
a=-2 b=9
The solution is the pair that gives sum 7.
\left(6x^{2}-2x\right)+\left(9x-3\right)
Rewrite 6x^{2}+7x-3 as \left(6x^{2}-2x\right)+\left(9x-3\right).
2x\left(3x-1\right)+3\left(3x-1\right)
Factor out 2x in the first and 3 in the second group.
\left(3x-1\right)\left(2x+3\right)
Factor out common term 3x-1 by using distributive property.
x=\frac{1}{3} x=-\frac{3}{2}
To find equation solutions, solve 3x-1=0 and 2x+3=0.
\left(x^{2}-4\right)\times 4+15+7x=\left(-x^{2}+1\right)\times 2
Variable x cannot be equal to any of the values -2,-1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{2}-1,x^{4}-5x^{2}+4,4-x^{2}.
4x^{2}-16+15+7x=\left(-x^{2}+1\right)\times 2
Use the distributive property to multiply x^{2}-4 by 4.
4x^{2}-1+7x=\left(-x^{2}+1\right)\times 2
Add -16 and 15 to get -1.
4x^{2}-1+7x=-2x^{2}+2
Use the distributive property to multiply -x^{2}+1 by 2.
4x^{2}-1+7x+2x^{2}=2
Add 2x^{2} to both sides.
6x^{2}-1+7x=2
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
6x^{2}-1+7x-2=0
Subtract 2 from both sides.
6x^{2}-3+7x=0
Subtract 2 from -1 to get -3.
6x^{2}+7x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-3\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 7 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
Square 7.
x=\frac{-7±\sqrt{49-24\left(-3\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-7±\sqrt{49+72}}{2\times 6}
Multiply -24 times -3.
x=\frac{-7±\sqrt{121}}{2\times 6}
Add 49 to 72.
x=\frac{-7±11}{2\times 6}
Take the square root of 121.
x=\frac{-7±11}{12}
Multiply 2 times 6.
x=\frac{4}{12}
Now solve the equation x=\frac{-7±11}{12} when ± is plus. Add -7 to 11.
x=\frac{1}{3}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
x=-\frac{18}{12}
Now solve the equation x=\frac{-7±11}{12} when ± is minus. Subtract 11 from -7.
x=-\frac{3}{2}
Reduce the fraction \frac{-18}{12} to lowest terms by extracting and canceling out 6.
x=\frac{1}{3} x=-\frac{3}{2}
The equation is now solved.
\left(x^{2}-4\right)\times 4+15+7x=\left(-x^{2}+1\right)\times 2
Variable x cannot be equal to any of the values -2,-1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{2}-1,x^{4}-5x^{2}+4,4-x^{2}.
4x^{2}-16+15+7x=\left(-x^{2}+1\right)\times 2
Use the distributive property to multiply x^{2}-4 by 4.
4x^{2}-1+7x=\left(-x^{2}+1\right)\times 2
Add -16 and 15 to get -1.
4x^{2}-1+7x=-2x^{2}+2
Use the distributive property to multiply -x^{2}+1 by 2.
4x^{2}-1+7x+2x^{2}=2
Add 2x^{2} to both sides.
6x^{2}-1+7x=2
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
6x^{2}+7x=2+1
Add 1 to both sides.
6x^{2}+7x=3
Add 2 and 1 to get 3.
\frac{6x^{2}+7x}{6}=\frac{3}{6}
Divide both sides by 6.
x^{2}+\frac{7}{6}x=\frac{3}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{7}{6}x=\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{1}{2}+\left(\frac{7}{12}\right)^{2}
Divide \frac{7}{6}, the coefficient of the x term, by 2 to get \frac{7}{12}. Then add the square of \frac{7}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{1}{2}+\frac{49}{144}
Square \frac{7}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{121}{144}
Add \frac{1}{2} to \frac{49}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{12}\right)^{2}=\frac{121}{144}
Factor x^{2}+\frac{7}{6}x+\frac{49}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
Take the square root of both sides of the equation.
x+\frac{7}{12}=\frac{11}{12} x+\frac{7}{12}=-\frac{11}{12}
Simplify.
x=\frac{1}{3} x=-\frac{3}{2}
Subtract \frac{7}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}