Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)^{2}\times 4+x^{2}\times 36=0
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x^{2}\left(x-2\right)^{2}, the least common multiple of x^{2},\left(2-x\right)^{2}.
\left(x^{2}-4x+4\right)\times 4+x^{2}\times 36=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}-16x+16+x^{2}\times 36=0
Use the distributive property to multiply x^{2}-4x+4 by 4.
40x^{2}-16x+16=0
Combine 4x^{2} and x^{2}\times 36 to get 40x^{2}.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 40\times 16}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, -16 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 40\times 16}}{2\times 40}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-160\times 16}}{2\times 40}
Multiply -4 times 40.
x=\frac{-\left(-16\right)±\sqrt{256-2560}}{2\times 40}
Multiply -160 times 16.
x=\frac{-\left(-16\right)±\sqrt{-2304}}{2\times 40}
Add 256 to -2560.
x=\frac{-\left(-16\right)±48i}{2\times 40}
Take the square root of -2304.
x=\frac{16±48i}{2\times 40}
The opposite of -16 is 16.
x=\frac{16±48i}{80}
Multiply 2 times 40.
x=\frac{16+48i}{80}
Now solve the equation x=\frac{16±48i}{80} when ± is plus. Add 16 to 48i.
x=\frac{1}{5}+\frac{3}{5}i
Divide 16+48i by 80.
x=\frac{16-48i}{80}
Now solve the equation x=\frac{16±48i}{80} when ± is minus. Subtract 48i from 16.
x=\frac{1}{5}-\frac{3}{5}i
Divide 16-48i by 80.
x=\frac{1}{5}+\frac{3}{5}i x=\frac{1}{5}-\frac{3}{5}i
The equation is now solved.
\left(x-2\right)^{2}\times 4+x^{2}\times 36=0
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x^{2}\left(x-2\right)^{2}, the least common multiple of x^{2},\left(2-x\right)^{2}.
\left(x^{2}-4x+4\right)\times 4+x^{2}\times 36=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}-16x+16+x^{2}\times 36=0
Use the distributive property to multiply x^{2}-4x+4 by 4.
40x^{2}-16x+16=0
Combine 4x^{2} and x^{2}\times 36 to get 40x^{2}.
40x^{2}-16x=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
\frac{40x^{2}-16x}{40}=-\frac{16}{40}
Divide both sides by 40.
x^{2}+\left(-\frac{16}{40}\right)x=-\frac{16}{40}
Dividing by 40 undoes the multiplication by 40.
x^{2}-\frac{2}{5}x=-\frac{16}{40}
Reduce the fraction \frac{-16}{40} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{2}{5}x=-\frac{2}{5}
Reduce the fraction \frac{-16}{40} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-\frac{2}{5}+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{2}{5}+\frac{1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{9}{25}
Add -\frac{2}{5} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=-\frac{9}{25}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{-\frac{9}{25}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{3}{5}i x-\frac{1}{5}=-\frac{3}{5}i
Simplify.
x=\frac{1}{5}+\frac{3}{5}i x=\frac{1}{5}-\frac{3}{5}i
Add \frac{1}{5} to both sides of the equation.