Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b^{2}\times 4+\left(b^{2}+4\right)\times \frac{25}{9}=\left(b-2i\right)\left(b+2i\right)b^{2}
Variable b cannot be equal to any of the values -2i,0,2i since division by zero is not defined. Multiply both sides of the equation by \left(b-2i\right)\left(b+2i\right)b^{2}, the least common multiple of b^{2}+4,b^{2}.
b^{2}\times 4+\frac{25}{9}b^{2}+\frac{100}{9}=\left(b-2i\right)\left(b+2i\right)b^{2}
Use the distributive property to multiply b^{2}+4 by \frac{25}{9}.
\frac{61}{9}b^{2}+\frac{100}{9}=\left(b-2i\right)\left(b+2i\right)b^{2}
Combine b^{2}\times 4 and \frac{25}{9}b^{2} to get \frac{61}{9}b^{2}.
\frac{61}{9}b^{2}+\frac{100}{9}=\left(b^{2}+4\right)b^{2}
Use the distributive property to multiply b-2i by b+2i and combine like terms.
\frac{61}{9}b^{2}+\frac{100}{9}=b^{4}+4b^{2}
Use the distributive property to multiply b^{2}+4 by b^{2}.
\frac{61}{9}b^{2}+\frac{100}{9}-b^{4}=4b^{2}
Subtract b^{4} from both sides.
\frac{61}{9}b^{2}+\frac{100}{9}-b^{4}-4b^{2}=0
Subtract 4b^{2} from both sides.
\frac{25}{9}b^{2}+\frac{100}{9}-b^{4}=0
Combine \frac{61}{9}b^{2} and -4b^{2} to get \frac{25}{9}b^{2}.
-t^{2}+\frac{25}{9}t+\frac{100}{9}=0
Substitute t for b^{2}.
t=\frac{-\frac{25}{9}±\sqrt{\left(\frac{25}{9}\right)^{2}-4\left(-1\right)\times \frac{100}{9}}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, \frac{25}{9} for b, and \frac{100}{9} for c in the quadratic formula.
t=\frac{-\frac{25}{9}±\frac{65}{9}}{-2}
Do the calculations.
t=-\frac{20}{9} t=5
Solve the equation t=\frac{-\frac{25}{9}±\frac{65}{9}}{-2} when ± is plus and when ± is minus.
b=-\frac{2\sqrt{5}i}{3} b=\frac{2\sqrt{5}i}{3} b=-\sqrt{5} b=\sqrt{5}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for each t.
b^{2}\times 4+\left(b^{2}+4\right)\times \frac{25}{9}=b^{2}\left(b^{2}+4\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b^{2}\left(b^{2}+4\right), the least common multiple of b^{2}+4,b^{2}.
b^{2}\times 4+\frac{25}{9}b^{2}+\frac{100}{9}=b^{2}\left(b^{2}+4\right)
Use the distributive property to multiply b^{2}+4 by \frac{25}{9}.
\frac{61}{9}b^{2}+\frac{100}{9}=b^{2}\left(b^{2}+4\right)
Combine b^{2}\times 4 and \frac{25}{9}b^{2} to get \frac{61}{9}b^{2}.
\frac{61}{9}b^{2}+\frac{100}{9}=b^{4}+4b^{2}
Use the distributive property to multiply b^{2} by b^{2}+4.
\frac{61}{9}b^{2}+\frac{100}{9}-b^{4}=4b^{2}
Subtract b^{4} from both sides.
\frac{61}{9}b^{2}+\frac{100}{9}-b^{4}-4b^{2}=0
Subtract 4b^{2} from both sides.
\frac{25}{9}b^{2}+\frac{100}{9}-b^{4}=0
Combine \frac{61}{9}b^{2} and -4b^{2} to get \frac{25}{9}b^{2}.
-t^{2}+\frac{25}{9}t+\frac{100}{9}=0
Substitute t for b^{2}.
t=\frac{-\frac{25}{9}±\sqrt{\left(\frac{25}{9}\right)^{2}-4\left(-1\right)\times \frac{100}{9}}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, \frac{25}{9} for b, and \frac{100}{9} for c in the quadratic formula.
t=\frac{-\frac{25}{9}±\frac{65}{9}}{-2}
Do the calculations.
t=-\frac{20}{9} t=5
Solve the equation t=\frac{-\frac{25}{9}±\frac{65}{9}}{-2} when ± is plus and when ± is minus.
b=\sqrt{5} b=-\sqrt{5}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for positive t.