Solve for b (complex solution)
b=\frac{2\sqrt{5}i}{3}\approx 1.490711985i
b=-\frac{2\sqrt{5}i}{3}\approx -0-1.490711985i
b=-\sqrt{5}\approx -2.236067977
b=\sqrt{5}\approx 2.236067977
Solve for b
b=\sqrt{5}\approx 2.236067977
b=-\sqrt{5}\approx -2.236067977
Share
Copied to clipboard
b^{2}\times 4+\left(b^{2}+4\right)\times \frac{25}{9}=\left(b-2i\right)\left(b+2i\right)b^{2}
Variable b cannot be equal to any of the values -2i,0,2i since division by zero is not defined. Multiply both sides of the equation by \left(b-2i\right)\left(b+2i\right)b^{2}, the least common multiple of b^{2}+4,b^{2}.
b^{2}\times 4+\frac{25}{9}b^{2}+\frac{100}{9}=\left(b-2i\right)\left(b+2i\right)b^{2}
Use the distributive property to multiply b^{2}+4 by \frac{25}{9}.
\frac{61}{9}b^{2}+\frac{100}{9}=\left(b-2i\right)\left(b+2i\right)b^{2}
Combine b^{2}\times 4 and \frac{25}{9}b^{2} to get \frac{61}{9}b^{2}.
\frac{61}{9}b^{2}+\frac{100}{9}=\left(b^{2}+4\right)b^{2}
Use the distributive property to multiply b-2i by b+2i and combine like terms.
\frac{61}{9}b^{2}+\frac{100}{9}=b^{4}+4b^{2}
Use the distributive property to multiply b^{2}+4 by b^{2}.
\frac{61}{9}b^{2}+\frac{100}{9}-b^{4}=4b^{2}
Subtract b^{4} from both sides.
\frac{61}{9}b^{2}+\frac{100}{9}-b^{4}-4b^{2}=0
Subtract 4b^{2} from both sides.
\frac{25}{9}b^{2}+\frac{100}{9}-b^{4}=0
Combine \frac{61}{9}b^{2} and -4b^{2} to get \frac{25}{9}b^{2}.
-t^{2}+\frac{25}{9}t+\frac{100}{9}=0
Substitute t for b^{2}.
t=\frac{-\frac{25}{9}±\sqrt{\left(\frac{25}{9}\right)^{2}-4\left(-1\right)\times \frac{100}{9}}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, \frac{25}{9} for b, and \frac{100}{9} for c in the quadratic formula.
t=\frac{-\frac{25}{9}±\frac{65}{9}}{-2}
Do the calculations.
t=-\frac{20}{9} t=5
Solve the equation t=\frac{-\frac{25}{9}±\frac{65}{9}}{-2} when ± is plus and when ± is minus.
b=-\frac{2\sqrt{5}i}{3} b=\frac{2\sqrt{5}i}{3} b=-\sqrt{5} b=\sqrt{5}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for each t.
b^{2}\times 4+\left(b^{2}+4\right)\times \frac{25}{9}=b^{2}\left(b^{2}+4\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b^{2}\left(b^{2}+4\right), the least common multiple of b^{2}+4,b^{2}.
b^{2}\times 4+\frac{25}{9}b^{2}+\frac{100}{9}=b^{2}\left(b^{2}+4\right)
Use the distributive property to multiply b^{2}+4 by \frac{25}{9}.
\frac{61}{9}b^{2}+\frac{100}{9}=b^{2}\left(b^{2}+4\right)
Combine b^{2}\times 4 and \frac{25}{9}b^{2} to get \frac{61}{9}b^{2}.
\frac{61}{9}b^{2}+\frac{100}{9}=b^{4}+4b^{2}
Use the distributive property to multiply b^{2} by b^{2}+4.
\frac{61}{9}b^{2}+\frac{100}{9}-b^{4}=4b^{2}
Subtract b^{4} from both sides.
\frac{61}{9}b^{2}+\frac{100}{9}-b^{4}-4b^{2}=0
Subtract 4b^{2} from both sides.
\frac{25}{9}b^{2}+\frac{100}{9}-b^{4}=0
Combine \frac{61}{9}b^{2} and -4b^{2} to get \frac{25}{9}b^{2}.
-t^{2}+\frac{25}{9}t+\frac{100}{9}=0
Substitute t for b^{2}.
t=\frac{-\frac{25}{9}±\sqrt{\left(\frac{25}{9}\right)^{2}-4\left(-1\right)\times \frac{100}{9}}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, \frac{25}{9} for b, and \frac{100}{9} for c in the quadratic formula.
t=\frac{-\frac{25}{9}±\frac{65}{9}}{-2}
Do the calculations.
t=-\frac{20}{9} t=5
Solve the equation t=\frac{-\frac{25}{9}±\frac{65}{9}}{-2} when ± is plus and when ± is minus.
b=\sqrt{5} b=-\sqrt{5}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}