Skip to main content
Solve for R
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+150\right)\times 4\times \frac{1.5}{150+x}=0.0745R\left(x+150\right)
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R\left(x+150\right), the least common multiple of R,150+x.
\left(4x+600\right)\times \frac{1.5}{150+x}=0.0745R\left(x+150\right)
Use the distributive property to multiply x+150 by 4.
4x\times \frac{1.5}{150+x}+600\times \frac{1.5}{150+x}=0.0745R\left(x+150\right)
Use the distributive property to multiply 4x+600 by \frac{1.5}{150+x}.
4x\times \frac{1.5}{150+x}+600\times \frac{1.5}{150+x}=0.0745Rx+11.175R
Use the distributive property to multiply 0.0745R by x+150.
0.0745Rx+11.175R=4x\times \frac{1.5}{150+x}+600\times \frac{1.5}{150+x}
Swap sides so that all variable terms are on the left hand side.
0.0745Rx\left(x+150\right)+11.175R\left(x+150\right)=4x\times 1.5+600\times 1.5
Multiply both sides of the equation by x+150.
0.0745Rx^{2}+11.175Rx+11.175R\left(x+150\right)=4x\times 1.5+600\times 1.5
Use the distributive property to multiply 0.0745Rx by x+150.
0.0745Rx^{2}+11.175Rx+11.175Rx+1676.25R=4x\times 1.5+600\times 1.5
Use the distributive property to multiply 11.175R by x+150.
0.0745Rx^{2}+22.35Rx+1676.25R=4x\times 1.5+600\times 1.5
Combine 11.175Rx and 11.175Rx to get 22.35Rx.
0.0745Rx^{2}+22.35Rx+1676.25R=6x+600\times 1.5
Multiply 4 and 1.5 to get 6.
0.0745Rx^{2}+22.35Rx+1676.25R=6x+900
Multiply 600 and 1.5 to get 900.
\left(0.0745x^{2}+22.35x+1676.25\right)R=6x+900
Combine all terms containing R.
\left(\frac{149x^{2}}{2000}+\frac{447x}{20}+1676.25\right)R=6x+900
The equation is in standard form.
\frac{\left(\frac{149x^{2}}{2000}+\frac{447x}{20}+1676.25\right)R}{\frac{149x^{2}}{2000}+\frac{447x}{20}+1676.25}=\frac{6x+900}{\frac{149x^{2}}{2000}+\frac{447x}{20}+1676.25}
Divide both sides by 0.0745x^{2}+22.35x+1676.25.
R=\frac{6x+900}{\frac{149x^{2}}{2000}+\frac{447x}{20}+1676.25}
Dividing by 0.0745x^{2}+22.35x+1676.25 undoes the multiplication by 0.0745x^{2}+22.35x+1676.25.
R=\frac{12000}{149\left(x+150\right)}
Divide 900+6x by 0.0745x^{2}+22.35x+1676.25.
R=\frac{12000}{149\left(x+150\right)}\text{, }R\neq 0
Variable R cannot be equal to 0.