Factor
\frac{\left(4p-3\right)\left(p+3\right)}{9}
Evaluate
\frac{4p^{2}}{9}+p-1
Share
Copied to clipboard
\frac{4p^{2}+9p-9}{9}
Factor out \frac{1}{9}.
a+b=9 ab=4\left(-9\right)=-36
Consider 4p^{2}+9p-9. Factor the expression by grouping. First, the expression needs to be rewritten as 4p^{2}+ap+bp-9. To find a and b, set up a system to be solved.
-1,36 -2,18 -3,12 -4,9 -6,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Calculate the sum for each pair.
a=-3 b=12
The solution is the pair that gives sum 9.
\left(4p^{2}-3p\right)+\left(12p-9\right)
Rewrite 4p^{2}+9p-9 as \left(4p^{2}-3p\right)+\left(12p-9\right).
p\left(4p-3\right)+3\left(4p-3\right)
Factor out p in the first and 3 in the second group.
\left(4p-3\right)\left(p+3\right)
Factor out common term 4p-3 by using distributive property.
\frac{\left(4p-3\right)\left(p+3\right)}{9}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}