Solve for x (complex solution)
x=-\frac{\sqrt{6}i}{2}\approx -0-1.224744871i
x=\frac{\sqrt{6}i}{2}\approx 1.224744871i
Graph
Share
Copied to clipboard
\frac{1}{2}-x^{2}=2
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
-x^{2}=2-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-x^{2}=\frac{3}{2}
Subtract \frac{1}{2} from 2 to get \frac{3}{2}.
x^{2}=\frac{\frac{3}{2}}{-1}
Divide both sides by -1.
x^{2}=\frac{3}{2\left(-1\right)}
Express \frac{\frac{3}{2}}{-1} as a single fraction.
x^{2}=\frac{3}{-2}
Multiply 2 and -1 to get -2.
x^{2}=-\frac{3}{2}
Fraction \frac{3}{-2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
x=\frac{\sqrt{6}i}{2} x=-\frac{\sqrt{6}i}{2}
The equation is now solved.
\frac{1}{2}-x^{2}=2
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{1}{2}-x^{2}-2=0
Subtract 2 from both sides.
-\frac{3}{2}-x^{2}=0
Subtract 2 from \frac{1}{2} to get -\frac{3}{2}.
-x^{2}-\frac{3}{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-\frac{3}{2}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -\frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-\frac{3}{2}\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-\frac{3}{2}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-6}}{2\left(-1\right)}
Multiply 4 times -\frac{3}{2}.
x=\frac{0±\sqrt{6}i}{2\left(-1\right)}
Take the square root of -6.
x=\frac{0±\sqrt{6}i}{-2}
Multiply 2 times -1.
x=-\frac{\sqrt{6}i}{2}
Now solve the equation x=\frac{0±\sqrt{6}i}{-2} when ± is plus.
x=\frac{\sqrt{6}i}{2}
Now solve the equation x=\frac{0±\sqrt{6}i}{-2} when ± is minus.
x=-\frac{\sqrt{6}i}{2} x=\frac{\sqrt{6}i}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}