Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}-x^{2}=2
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
-x^{2}=2-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-x^{2}=\frac{3}{2}
Subtract \frac{1}{2} from 2 to get \frac{3}{2}.
x^{2}=\frac{\frac{3}{2}}{-1}
Divide both sides by -1.
x^{2}=\frac{3}{2\left(-1\right)}
Express \frac{\frac{3}{2}}{-1} as a single fraction.
x^{2}=\frac{3}{-2}
Multiply 2 and -1 to get -2.
x^{2}=-\frac{3}{2}
Fraction \frac{3}{-2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
x=\frac{\sqrt{6}i}{2} x=-\frac{\sqrt{6}i}{2}
The equation is now solved.
\frac{1}{2}-x^{2}=2
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{1}{2}-x^{2}-2=0
Subtract 2 from both sides.
-\frac{3}{2}-x^{2}=0
Subtract 2 from \frac{1}{2} to get -\frac{3}{2}.
-x^{2}-\frac{3}{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-\frac{3}{2}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -\frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-\frac{3}{2}\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-\frac{3}{2}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-6}}{2\left(-1\right)}
Multiply 4 times -\frac{3}{2}.
x=\frac{0±\sqrt{6}i}{2\left(-1\right)}
Take the square root of -6.
x=\frac{0±\sqrt{6}i}{-2}
Multiply 2 times -1.
x=-\frac{\sqrt{6}i}{2}
Now solve the equation x=\frac{0±\sqrt{6}i}{-2} when ± is plus.
x=\frac{\sqrt{6}i}{2}
Now solve the equation x=\frac{0±\sqrt{6}i}{-2} when ± is minus.
x=-\frac{\sqrt{6}i}{2} x=\frac{\sqrt{6}i}{2}
The equation is now solved.