Evaluate
\frac{40}{7}\approx 5.714285714
Factor
\frac{2 ^ {3} \cdot 5}{7} = 5\frac{5}{7} = 5.714285714285714
Share
Copied to clipboard
\frac{\frac{4\times 4}{7\times 3}}{\frac{2}{5}-\frac{4}{15}}
Multiply \frac{4}{7} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{16}{21}}{\frac{2}{5}-\frac{4}{15}}
Do the multiplications in the fraction \frac{4\times 4}{7\times 3}.
\frac{\frac{16}{21}}{\frac{6}{15}-\frac{4}{15}}
Least common multiple of 5 and 15 is 15. Convert \frac{2}{5} and \frac{4}{15} to fractions with denominator 15.
\frac{\frac{16}{21}}{\frac{6-4}{15}}
Since \frac{6}{15} and \frac{4}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{16}{21}}{\frac{2}{15}}
Subtract 4 from 6 to get 2.
\frac{16}{21}\times \frac{15}{2}
Divide \frac{16}{21} by \frac{2}{15} by multiplying \frac{16}{21} by the reciprocal of \frac{2}{15}.
\frac{16\times 15}{21\times 2}
Multiply \frac{16}{21} times \frac{15}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{240}{42}
Do the multiplications in the fraction \frac{16\times 15}{21\times 2}.
\frac{40}{7}
Reduce the fraction \frac{240}{42} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}