Evaluate
\frac{4g}{3}+\frac{7}{6}
Factor
\frac{8g+7}{6}
Share
Copied to clipboard
\frac{4}{7}\times \frac{7}{8}+\frac{1-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g
Rewrite the square root of the division \frac{49}{64} as the division of square roots \frac{\sqrt{49}}{\sqrt{64}}. Take the square root of both numerator and denominator.
\frac{4\times 7}{7\times 8}+\frac{1-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g
Multiply \frac{4}{7} times \frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{8}+\frac{1-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g
Cancel out 7 in both numerator and denominator.
\frac{1}{2}+\frac{1-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{1}{2}+\frac{\frac{5}{5}-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g
Convert 1 to fraction \frac{5}{5}.
\frac{1}{2}+\frac{\frac{5-3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g
Since \frac{5}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}+\frac{\frac{2}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g
Subtract 3 from 5 to get 2.
\frac{1}{2}+\frac{2}{5}\times \frac{5}{3}+\left(1+\frac{1}{3}\right)g
Divide \frac{2}{5} by \frac{3}{5} by multiplying \frac{2}{5} by the reciprocal of \frac{3}{5}.
\frac{1}{2}+\frac{2\times 5}{5\times 3}+\left(1+\frac{1}{3}\right)g
Multiply \frac{2}{5} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}+\frac{2}{3}+\left(1+\frac{1}{3}\right)g
Cancel out 5 in both numerator and denominator.
\frac{3}{6}+\frac{4}{6}+\left(1+\frac{1}{3}\right)g
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{3+4}{6}+\left(1+\frac{1}{3}\right)g
Since \frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{7}{6}+\left(1+\frac{1}{3}\right)g
Add 3 and 4 to get 7.
\frac{7}{6}+\left(\frac{3}{3}+\frac{1}{3}\right)g
Convert 1 to fraction \frac{3}{3}.
\frac{7}{6}+\frac{3+1}{3}g
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{7}{6}+\frac{4}{3}g
Add 3 and 1 to get 4.
factor(\frac{4}{7}\times \frac{7}{8}+\frac{1-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g)
Rewrite the square root of the division \frac{49}{64} as the division of square roots \frac{\sqrt{49}}{\sqrt{64}}. Take the square root of both numerator and denominator.
factor(\frac{4\times 7}{7\times 8}+\frac{1-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g)
Multiply \frac{4}{7} times \frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
factor(\frac{4}{8}+\frac{1-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g)
Cancel out 7 in both numerator and denominator.
factor(\frac{1}{2}+\frac{1-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g)
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
factor(\frac{1}{2}+\frac{\frac{5}{5}-\frac{3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g)
Convert 1 to fraction \frac{5}{5}.
factor(\frac{1}{2}+\frac{\frac{5-3}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g)
Since \frac{5}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
factor(\frac{1}{2}+\frac{\frac{2}{5}}{\frac{3}{5}}+\left(1+\frac{1}{3}\right)g)
Subtract 3 from 5 to get 2.
factor(\frac{1}{2}+\frac{2}{5}\times \frac{5}{3}+\left(1+\frac{1}{3}\right)g)
Divide \frac{2}{5} by \frac{3}{5} by multiplying \frac{2}{5} by the reciprocal of \frac{3}{5}.
factor(\frac{1}{2}+\frac{2\times 5}{5\times 3}+\left(1+\frac{1}{3}\right)g)
Multiply \frac{2}{5} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
factor(\frac{1}{2}+\frac{2}{3}+\left(1+\frac{1}{3}\right)g)
Cancel out 5 in both numerator and denominator.
factor(\frac{3}{6}+\frac{4}{6}+\left(1+\frac{1}{3}\right)g)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
factor(\frac{3+4}{6}+\left(1+\frac{1}{3}\right)g)
Since \frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
factor(\frac{7}{6}+\left(1+\frac{1}{3}\right)g)
Add 3 and 4 to get 7.
factor(\frac{7}{6}+\left(\frac{3}{3}+\frac{1}{3}\right)g)
Convert 1 to fraction \frac{3}{3}.
factor(\frac{7}{6}+\frac{3+1}{3}g)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
factor(\frac{7}{6}+\frac{4}{3}g)
Add 3 and 1 to get 4.
\frac{7+8g}{6}
Factor out \frac{1}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}