Evaluate
-\frac{31}{20}i=-1.55i
Real Part
0
Share
Copied to clipboard
\frac{4i}{-5}+\frac{3}{4i}
Multiply both numerator and denominator of \frac{4}{5i} by imaginary unit i.
-\frac{4}{5}i+\frac{3}{4i}
Divide 4i by -5 to get -\frac{4}{5}i.
-\frac{4}{5}i+\frac{3i}{-4}
Multiply both numerator and denominator of \frac{3}{4i} by imaginary unit i.
-\frac{4}{5}i-\frac{3}{4}i
Divide 3i by -4 to get -\frac{3}{4}i.
-\frac{31}{20}i
Subtract \frac{3}{4}i from -\frac{4}{5}i to get -\frac{31}{20}i.
Re(\frac{4i}{-5}+\frac{3}{4i})
Multiply both numerator and denominator of \frac{4}{5i} by imaginary unit i.
Re(-\frac{4}{5}i+\frac{3}{4i})
Divide 4i by -5 to get -\frac{4}{5}i.
Re(-\frac{4}{5}i+\frac{3i}{-4})
Multiply both numerator and denominator of \frac{3}{4i} by imaginary unit i.
Re(-\frac{4}{5}i-\frac{3}{4}i)
Divide 3i by -4 to get -\frac{3}{4}i.
Re(-\frac{31}{20}i)
Subtract \frac{3}{4}i from -\frac{4}{5}i to get -\frac{31}{20}i.
0
The real part of -\frac{31}{20}i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}