Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+2\right)\times 4-\left(5x+15\right)=3\left(x+2\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,-2 since division by zero is not defined. Multiply both sides of the equation by 5\left(x+2\right)\left(x+3\right), the least common multiple of 5\left(x+3\right),x+2,5.
4x+8-\left(5x+15\right)=3\left(x+2\right)\left(x+3\right)
Use the distributive property to multiply x+2 by 4.
4x+8-5x-15=3\left(x+2\right)\left(x+3\right)
To find the opposite of 5x+15, find the opposite of each term.
-x+8-15=3\left(x+2\right)\left(x+3\right)
Combine 4x and -5x to get -x.
-x-7=3\left(x+2\right)\left(x+3\right)
Subtract 15 from 8 to get -7.
-x-7=\left(3x+6\right)\left(x+3\right)
Use the distributive property to multiply 3 by x+2.
-x-7=3x^{2}+15x+18
Use the distributive property to multiply 3x+6 by x+3 and combine like terms.
-x-7-3x^{2}=15x+18
Subtract 3x^{2} from both sides.
-x-7-3x^{2}-15x=18
Subtract 15x from both sides.
-16x-7-3x^{2}=18
Combine -x and -15x to get -16x.
-16x-7-3x^{2}-18=0
Subtract 18 from both sides.
-16x-25-3x^{2}=0
Subtract 18 from -7 to get -25.
-3x^{2}-16x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-3\right)\left(-25\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -16 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-3\right)\left(-25\right)}}{2\left(-3\right)}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256+12\left(-25\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-16\right)±\sqrt{256-300}}{2\left(-3\right)}
Multiply 12 times -25.
x=\frac{-\left(-16\right)±\sqrt{-44}}{2\left(-3\right)}
Add 256 to -300.
x=\frac{-\left(-16\right)±2\sqrt{11}i}{2\left(-3\right)}
Take the square root of -44.
x=\frac{16±2\sqrt{11}i}{2\left(-3\right)}
The opposite of -16 is 16.
x=\frac{16±2\sqrt{11}i}{-6}
Multiply 2 times -3.
x=\frac{16+2\sqrt{11}i}{-6}
Now solve the equation x=\frac{16±2\sqrt{11}i}{-6} when ± is plus. Add 16 to 2i\sqrt{11}.
x=\frac{-\sqrt{11}i-8}{3}
Divide 16+2i\sqrt{11} by -6.
x=\frac{-2\sqrt{11}i+16}{-6}
Now solve the equation x=\frac{16±2\sqrt{11}i}{-6} when ± is minus. Subtract 2i\sqrt{11} from 16.
x=\frac{-8+\sqrt{11}i}{3}
Divide 16-2i\sqrt{11} by -6.
x=\frac{-\sqrt{11}i-8}{3} x=\frac{-8+\sqrt{11}i}{3}
The equation is now solved.
\left(x+2\right)\times 4-\left(5x+15\right)=3\left(x+2\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,-2 since division by zero is not defined. Multiply both sides of the equation by 5\left(x+2\right)\left(x+3\right), the least common multiple of 5\left(x+3\right),x+2,5.
4x+8-\left(5x+15\right)=3\left(x+2\right)\left(x+3\right)
Use the distributive property to multiply x+2 by 4.
4x+8-5x-15=3\left(x+2\right)\left(x+3\right)
To find the opposite of 5x+15, find the opposite of each term.
-x+8-15=3\left(x+2\right)\left(x+3\right)
Combine 4x and -5x to get -x.
-x-7=3\left(x+2\right)\left(x+3\right)
Subtract 15 from 8 to get -7.
-x-7=\left(3x+6\right)\left(x+3\right)
Use the distributive property to multiply 3 by x+2.
-x-7=3x^{2}+15x+18
Use the distributive property to multiply 3x+6 by x+3 and combine like terms.
-x-7-3x^{2}=15x+18
Subtract 3x^{2} from both sides.
-x-7-3x^{2}-15x=18
Subtract 15x from both sides.
-16x-7-3x^{2}=18
Combine -x and -15x to get -16x.
-16x-3x^{2}=18+7
Add 7 to both sides.
-16x-3x^{2}=25
Add 18 and 7 to get 25.
-3x^{2}-16x=25
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-16x}{-3}=\frac{25}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{16}{-3}\right)x=\frac{25}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{16}{3}x=\frac{25}{-3}
Divide -16 by -3.
x^{2}+\frac{16}{3}x=-\frac{25}{3}
Divide 25 by -3.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=-\frac{25}{3}+\left(\frac{8}{3}\right)^{2}
Divide \frac{16}{3}, the coefficient of the x term, by 2 to get \frac{8}{3}. Then add the square of \frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{3}x+\frac{64}{9}=-\frac{25}{3}+\frac{64}{9}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{3}x+\frac{64}{9}=-\frac{11}{9}
Add -\frac{25}{3} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{3}\right)^{2}=-\frac{11}{9}
Factor x^{2}+\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{-\frac{11}{9}}
Take the square root of both sides of the equation.
x+\frac{8}{3}=\frac{\sqrt{11}i}{3} x+\frac{8}{3}=-\frac{\sqrt{11}i}{3}
Simplify.
x=\frac{-8+\sqrt{11}i}{3} x=\frac{-\sqrt{11}i-8}{3}
Subtract \frac{8}{3} from both sides of the equation.