Solve for h
h\in \mathrm{R}
Share
Copied to clipboard
\frac{4}{5}h-\frac{2}{3}h-\frac{2}{3}\left(-9\right)\geq \frac{1}{15}\left(2h+90\right)
Use the distributive property to multiply -\frac{2}{3} by h-9.
\frac{4}{5}h-\frac{2}{3}h+\frac{-2\left(-9\right)}{3}\geq \frac{1}{15}\left(2h+90\right)
Express -\frac{2}{3}\left(-9\right) as a single fraction.
\frac{4}{5}h-\frac{2}{3}h+\frac{18}{3}\geq \frac{1}{15}\left(2h+90\right)
Multiply -2 and -9 to get 18.
\frac{4}{5}h-\frac{2}{3}h+6\geq \frac{1}{15}\left(2h+90\right)
Divide 18 by 3 to get 6.
\frac{2}{15}h+6\geq \frac{1}{15}\left(2h+90\right)
Combine \frac{4}{5}h and -\frac{2}{3}h to get \frac{2}{15}h.
\frac{2}{15}h+6\geq \frac{1}{15}\times 2h+\frac{1}{15}\times 90
Use the distributive property to multiply \frac{1}{15} by 2h+90.
\frac{2}{15}h+6\geq \frac{2}{15}h+\frac{1}{15}\times 90
Multiply \frac{1}{15} and 2 to get \frac{2}{15}.
\frac{2}{15}h+6\geq \frac{2}{15}h+\frac{90}{15}
Multiply \frac{1}{15} and 90 to get \frac{90}{15}.
\frac{2}{15}h+6\geq \frac{2}{15}h+6
Divide 90 by 15 to get 6.
\frac{2}{15}h+6-\frac{2}{15}h\geq 6
Subtract \frac{2}{15}h from both sides.
6\geq 6
Combine \frac{2}{15}h and -\frac{2}{15}h to get 0.
h\in \mathrm{R}
This is true for any h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}