\frac { 4 } { 5 } - ( 2,4 - g ) - ( 1 - 3 g ) = 0
Solve for g
g=0,65
Share
Copied to clipboard
\frac{4}{5}-2,4-\left(-g\right)-\left(1-3g\right)=0
To find the opposite of 2,4-g, find the opposite of each term.
\frac{4}{5}-2,4+g-\left(1-3g\right)=0
The opposite of -g is g.
\frac{4}{5}-\frac{12}{5}+g-\left(1-3g\right)=0
Convert decimal number 2,4 to fraction \frac{24}{10}. Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
\frac{4-12}{5}+g-\left(1-3g\right)=0
Since \frac{4}{5} and \frac{12}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{8}{5}+g-\left(1-3g\right)=0
Subtract 12 from 4 to get -8.
-\frac{8}{5}+g-1-\left(-3g\right)=0
To find the opposite of 1-3g, find the opposite of each term.
-\frac{8}{5}+g-1+3g=0
The opposite of -3g is 3g.
-\frac{8}{5}+g-\frac{5}{5}+3g=0
Convert 1 to fraction \frac{5}{5}.
\frac{-8-5}{5}+g+3g=0
Since -\frac{8}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{5}+g+3g=0
Subtract 5 from -8 to get -13.
-\frac{13}{5}+4g=0
Combine g and 3g to get 4g.
4g=\frac{13}{5}
Add \frac{13}{5} to both sides. Anything plus zero gives itself.
g=\frac{\frac{13}{5}}{4}
Divide both sides by 4.
g=\frac{13}{5\times 4}
Express \frac{\frac{13}{5}}{4} as a single fraction.
g=\frac{13}{20}
Multiply 5 and 4 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}