Solve for y
y = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
\frac{4}{5}y+\frac{4}{5}\times \frac{5}{6}-\frac{2}{3}\left(y-\frac{1}{4}\right)=\frac{7}{6}
Use the distributive property to multiply \frac{4}{5} by y+\frac{5}{6}.
\frac{4}{5}y+\frac{4\times 5}{5\times 6}-\frac{2}{3}\left(y-\frac{1}{4}\right)=\frac{7}{6}
Multiply \frac{4}{5} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}y+\frac{4}{6}-\frac{2}{3}\left(y-\frac{1}{4}\right)=\frac{7}{6}
Cancel out 5 in both numerator and denominator.
\frac{4}{5}y+\frac{2}{3}-\frac{2}{3}\left(y-\frac{1}{4}\right)=\frac{7}{6}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{4}{5}y+\frac{2}{3}-\frac{2}{3}y-\frac{2}{3}\left(-\frac{1}{4}\right)=\frac{7}{6}
Use the distributive property to multiply -\frac{2}{3} by y-\frac{1}{4}.
\frac{4}{5}y+\frac{2}{3}-\frac{2}{3}y+\frac{-2\left(-1\right)}{3\times 4}=\frac{7}{6}
Multiply -\frac{2}{3} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}y+\frac{2}{3}-\frac{2}{3}y+\frac{2}{12}=\frac{7}{6}
Do the multiplications in the fraction \frac{-2\left(-1\right)}{3\times 4}.
\frac{4}{5}y+\frac{2}{3}-\frac{2}{3}y+\frac{1}{6}=\frac{7}{6}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{2}{15}y+\frac{2}{3}+\frac{1}{6}=\frac{7}{6}
Combine \frac{4}{5}y and -\frac{2}{3}y to get \frac{2}{15}y.
\frac{2}{15}y+\frac{4}{6}+\frac{1}{6}=\frac{7}{6}
Least common multiple of 3 and 6 is 6. Convert \frac{2}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{2}{15}y+\frac{4+1}{6}=\frac{7}{6}
Since \frac{4}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{2}{15}y+\frac{5}{6}=\frac{7}{6}
Add 4 and 1 to get 5.
\frac{2}{15}y=\frac{7}{6}-\frac{5}{6}
Subtract \frac{5}{6} from both sides.
\frac{2}{15}y=\frac{7-5}{6}
Since \frac{7}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{15}y=\frac{2}{6}
Subtract 5 from 7 to get 2.
\frac{2}{15}y=\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
y=\frac{1}{3}\times \frac{15}{2}
Multiply both sides by \frac{15}{2}, the reciprocal of \frac{2}{15}.
y=\frac{1\times 15}{3\times 2}
Multiply \frac{1}{3} times \frac{15}{2} by multiplying numerator times numerator and denominator times denominator.
y=\frac{15}{6}
Do the multiplications in the fraction \frac{1\times 15}{3\times 2}.
y=\frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}