Solve for x
x=\frac{1177}{7080}\approx 0.166242938
Graph
Share
Copied to clipboard
144\left(\frac{15x}{2}+\frac{10}{3}\right)-135\left(\frac{8x}{9}-\frac{5}{6}\right)=150\left(30x-\frac{2}{15}\right)+24
Multiply both sides of the equation by 180, the least common multiple of 5,2,3,4,9,6,15.
144\left(\frac{3\times 15x}{6}+\frac{10\times 2}{6}\right)-135\left(\frac{8x}{9}-\frac{5}{6}\right)=150\left(30x-\frac{2}{15}\right)+24
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{15x}{2} times \frac{3}{3}. Multiply \frac{10}{3} times \frac{2}{2}.
144\times \frac{3\times 15x+10\times 2}{6}-135\left(\frac{8x}{9}-\frac{5}{6}\right)=150\left(30x-\frac{2}{15}\right)+24
Since \frac{3\times 15x}{6} and \frac{10\times 2}{6} have the same denominator, add them by adding their numerators.
144\times \frac{45x+20}{6}-135\left(\frac{8x}{9}-\frac{5}{6}\right)=150\left(30x-\frac{2}{15}\right)+24
Do the multiplications in 3\times 15x+10\times 2.
24\left(45x+20\right)-135\left(\frac{8x}{9}-\frac{5}{6}\right)=150\left(30x-\frac{2}{15}\right)+24
Cancel out 6, the greatest common factor in 144 and 6.
1080x+480-135\left(\frac{8x}{9}-\frac{5}{6}\right)=150\left(30x-\frac{2}{15}\right)+24
Use the distributive property to multiply 24 by 45x+20.
1080x+480-135\left(\frac{2\times 8x}{18}-\frac{5\times 3}{18}\right)=150\left(30x-\frac{2}{15}\right)+24
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 6 is 18. Multiply \frac{8x}{9} times \frac{2}{2}. Multiply \frac{5}{6} times \frac{3}{3}.
1080x+480-135\times \frac{2\times 8x-5\times 3}{18}=150\left(30x-\frac{2}{15}\right)+24
Since \frac{2\times 8x}{18} and \frac{5\times 3}{18} have the same denominator, subtract them by subtracting their numerators.
1080x+480-135\times \frac{16x-15}{18}=150\left(30x-\frac{2}{15}\right)+24
Do the multiplications in 2\times 8x-5\times 3.
1080x+480-\frac{135\left(16x-15\right)}{18}=150\left(30x-\frac{2}{15}\right)+24
Express 135\times \frac{16x-15}{18} as a single fraction.
1080x+480-\frac{2160x-2025}{18}=150\left(30x-\frac{2}{15}\right)+24
Use the distributive property to multiply 135 by 16x-15.
1080x+480-\frac{2160x-2025}{18}=4500x+150\left(-\frac{2}{15}\right)+24
Use the distributive property to multiply 150 by 30x-\frac{2}{15}.
1080x+480-\frac{2160x-2025}{18}=4500x+\frac{150\left(-2\right)}{15}+24
Express 150\left(-\frac{2}{15}\right) as a single fraction.
1080x+480-\frac{2160x-2025}{18}=4500x+\frac{-300}{15}+24
Multiply 150 and -2 to get -300.
1080x+480-\frac{2160x-2025}{18}=4500x-20+24
Divide -300 by 15 to get -20.
1080x+480-\frac{2160x-2025}{18}=4500x+4
Add -20 and 24 to get 4.
1080x+480-\left(120x-\frac{225}{2}\right)=4500x+4
Divide each term of 2160x-2025 by 18 to get 120x-\frac{225}{2}.
1080x+480-120x-\left(-\frac{225}{2}\right)=4500x+4
To find the opposite of 120x-\frac{225}{2}, find the opposite of each term.
1080x+480-120x+\frac{225}{2}=4500x+4
The opposite of -\frac{225}{2} is \frac{225}{2}.
960x+480+\frac{225}{2}=4500x+4
Combine 1080x and -120x to get 960x.
960x+\frac{960}{2}+\frac{225}{2}=4500x+4
Convert 480 to fraction \frac{960}{2}.
960x+\frac{960+225}{2}=4500x+4
Since \frac{960}{2} and \frac{225}{2} have the same denominator, add them by adding their numerators.
960x+\frac{1185}{2}=4500x+4
Add 960 and 225 to get 1185.
960x+\frac{1185}{2}-4500x=4
Subtract 4500x from both sides.
-3540x+\frac{1185}{2}=4
Combine 960x and -4500x to get -3540x.
-3540x=4-\frac{1185}{2}
Subtract \frac{1185}{2} from both sides.
-3540x=\frac{8}{2}-\frac{1185}{2}
Convert 4 to fraction \frac{8}{2}.
-3540x=\frac{8-1185}{2}
Since \frac{8}{2} and \frac{1185}{2} have the same denominator, subtract them by subtracting their numerators.
-3540x=-\frac{1177}{2}
Subtract 1185 from 8 to get -1177.
x=\frac{-\frac{1177}{2}}{-3540}
Divide both sides by -3540.
x=\frac{-1177}{2\left(-3540\right)}
Express \frac{-\frac{1177}{2}}{-3540} as a single fraction.
x=\frac{-1177}{-7080}
Multiply 2 and -3540 to get -7080.
x=\frac{1177}{7080}
Fraction \frac{-1177}{-7080} can be simplified to \frac{1177}{7080} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}