Solve for m
m=-1
m=\frac{2}{3}\approx 0.666666667
Share
Copied to clipboard
\left(-1-6m\right)\times 4=m-4+\left(m-4\right)\left(6m+1\right)
Variable m cannot be equal to any of the values -\frac{1}{6},4 since division by zero is not defined. Multiply both sides of the equation by \left(m-4\right)\left(6m+1\right), the least common multiple of 4-m,6m+1.
-4-24m=m-4+\left(m-4\right)\left(6m+1\right)
Use the distributive property to multiply -1-6m by 4.
-4-24m=m-4+6m^{2}-23m-4
Use the distributive property to multiply m-4 by 6m+1 and combine like terms.
-4-24m=-22m-4+6m^{2}-4
Combine m and -23m to get -22m.
-4-24m=-22m-8+6m^{2}
Subtract 4 from -4 to get -8.
-4-24m+22m=-8+6m^{2}
Add 22m to both sides.
-4-2m=-8+6m^{2}
Combine -24m and 22m to get -2m.
-4-2m-\left(-8\right)=6m^{2}
Subtract -8 from both sides.
-4-2m+8=6m^{2}
The opposite of -8 is 8.
-4-2m+8-6m^{2}=0
Subtract 6m^{2} from both sides.
4-2m-6m^{2}=0
Add -4 and 8 to get 4.
-6m^{2}-2m+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-6\right)\times 4}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -2 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-2\right)±\sqrt{4-4\left(-6\right)\times 4}}{2\left(-6\right)}
Square -2.
m=\frac{-\left(-2\right)±\sqrt{4+24\times 4}}{2\left(-6\right)}
Multiply -4 times -6.
m=\frac{-\left(-2\right)±\sqrt{4+96}}{2\left(-6\right)}
Multiply 24 times 4.
m=\frac{-\left(-2\right)±\sqrt{100}}{2\left(-6\right)}
Add 4 to 96.
m=\frac{-\left(-2\right)±10}{2\left(-6\right)}
Take the square root of 100.
m=\frac{2±10}{2\left(-6\right)}
The opposite of -2 is 2.
m=\frac{2±10}{-12}
Multiply 2 times -6.
m=\frac{12}{-12}
Now solve the equation m=\frac{2±10}{-12} when ± is plus. Add 2 to 10.
m=-1
Divide 12 by -12.
m=-\frac{8}{-12}
Now solve the equation m=\frac{2±10}{-12} when ± is minus. Subtract 10 from 2.
m=\frac{2}{3}
Reduce the fraction \frac{-8}{-12} to lowest terms by extracting and canceling out 4.
m=-1 m=\frac{2}{3}
The equation is now solved.
\left(-1-6m\right)\times 4=m-4+\left(m-4\right)\left(6m+1\right)
Variable m cannot be equal to any of the values -\frac{1}{6},4 since division by zero is not defined. Multiply both sides of the equation by \left(m-4\right)\left(6m+1\right), the least common multiple of 4-m,6m+1.
-4-24m=m-4+\left(m-4\right)\left(6m+1\right)
Use the distributive property to multiply -1-6m by 4.
-4-24m=m-4+6m^{2}-23m-4
Use the distributive property to multiply m-4 by 6m+1 and combine like terms.
-4-24m=-22m-4+6m^{2}-4
Combine m and -23m to get -22m.
-4-24m=-22m-8+6m^{2}
Subtract 4 from -4 to get -8.
-4-24m+22m=-8+6m^{2}
Add 22m to both sides.
-4-2m=-8+6m^{2}
Combine -24m and 22m to get -2m.
-4-2m-6m^{2}=-8
Subtract 6m^{2} from both sides.
-2m-6m^{2}=-8+4
Add 4 to both sides.
-2m-6m^{2}=-4
Add -8 and 4 to get -4.
-6m^{2}-2m=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6m^{2}-2m}{-6}=-\frac{4}{-6}
Divide both sides by -6.
m^{2}+\left(-\frac{2}{-6}\right)m=-\frac{4}{-6}
Dividing by -6 undoes the multiplication by -6.
m^{2}+\frac{1}{3}m=-\frac{4}{-6}
Reduce the fraction \frac{-2}{-6} to lowest terms by extracting and canceling out 2.
m^{2}+\frac{1}{3}m=\frac{2}{3}
Reduce the fraction \frac{-4}{-6} to lowest terms by extracting and canceling out 2.
m^{2}+\frac{1}{3}m+\left(\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{1}{3}m+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{1}{3}m+\frac{1}{36}=\frac{25}{36}
Add \frac{2}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{1}{6}\right)^{2}=\frac{25}{36}
Factor m^{2}+\frac{1}{3}m+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
m+\frac{1}{6}=\frac{5}{6} m+\frac{1}{6}=-\frac{5}{6}
Simplify.
m=\frac{2}{3} m=-1
Subtract \frac{1}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}