Solve for x (complex solution)
x=\frac{5+\sqrt{2}i}{3}\approx 1.666666667+0.471404521i
x=\frac{-\sqrt{2}i+5}{3}\approx 1.666666667-0.471404521i
Graph
Share
Copied to clipboard
\frac{4}{3}x-6-x^{2}=-2x-3
Subtract x^{2} from both sides.
\frac{4}{3}x-6-x^{2}+2x=-3
Add 2x to both sides.
\frac{10}{3}x-6-x^{2}=-3
Combine \frac{4}{3}x and 2x to get \frac{10}{3}x.
\frac{10}{3}x-6-x^{2}+3=0
Add 3 to both sides.
\frac{10}{3}x-3-x^{2}=0
Add -6 and 3 to get -3.
-x^{2}+\frac{10}{3}x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{10}{3}±\sqrt{\left(\frac{10}{3}\right)^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{10}{3} for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{10}{3}±\sqrt{\frac{100}{9}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square \frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{10}{3}±\sqrt{\frac{100}{9}+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{10}{3}±\sqrt{\frac{100}{9}-12}}{2\left(-1\right)}
Multiply 4 times -3.
x=\frac{-\frac{10}{3}±\sqrt{-\frac{8}{9}}}{2\left(-1\right)}
Add \frac{100}{9} to -12.
x=\frac{-\frac{10}{3}±\frac{2\sqrt{2}i}{3}}{2\left(-1\right)}
Take the square root of -\frac{8}{9}.
x=\frac{-\frac{10}{3}±\frac{2\sqrt{2}i}{3}}{-2}
Multiply 2 times -1.
x=\frac{-10+2\sqrt{2}i}{-2\times 3}
Now solve the equation x=\frac{-\frac{10}{3}±\frac{2\sqrt{2}i}{3}}{-2} when ± is plus. Add -\frac{10}{3} to \frac{2i\sqrt{2}}{3}.
x=\frac{-\sqrt{2}i+5}{3}
Divide \frac{-10+2i\sqrt{2}}{3} by -2.
x=\frac{-2\sqrt{2}i-10}{-2\times 3}
Now solve the equation x=\frac{-\frac{10}{3}±\frac{2\sqrt{2}i}{3}}{-2} when ± is minus. Subtract \frac{2i\sqrt{2}}{3} from -\frac{10}{3}.
x=\frac{5+\sqrt{2}i}{3}
Divide \frac{-10-2i\sqrt{2}}{3} by -2.
x=\frac{-\sqrt{2}i+5}{3} x=\frac{5+\sqrt{2}i}{3}
The equation is now solved.
\frac{4}{3}x-6-x^{2}=-2x-3
Subtract x^{2} from both sides.
\frac{4}{3}x-6-x^{2}+2x=-3
Add 2x to both sides.
\frac{10}{3}x-6-x^{2}=-3
Combine \frac{4}{3}x and 2x to get \frac{10}{3}x.
\frac{10}{3}x-x^{2}=-3+6
Add 6 to both sides.
\frac{10}{3}x-x^{2}=3
Add -3 and 6 to get 3.
-x^{2}+\frac{10}{3}x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+\frac{10}{3}x}{-1}=\frac{3}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{10}{3}}{-1}x=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{10}{3}x=\frac{3}{-1}
Divide \frac{10}{3} by -1.
x^{2}-\frac{10}{3}x=-3
Divide 3 by -1.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-3+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-3+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{2}{9}
Add -3 to \frac{25}{9}.
\left(x-\frac{5}{3}\right)^{2}=-\frac{2}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{-\frac{2}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{\sqrt{2}i}{3} x-\frac{5}{3}=-\frac{\sqrt{2}i}{3}
Simplify.
x=\frac{5+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+5}{3}
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}