Solve for x
x=-3
Graph
Share
Copied to clipboard
-\frac{1}{3}x+\frac{1}{2}=\frac{1}{4}-1-\frac{3}{4}x
Combine \frac{4}{3}x and -\frac{5}{3}x to get -\frac{1}{3}x.
-\frac{1}{3}x+\frac{1}{2}=\frac{1}{4}-\frac{4}{4}-\frac{3}{4}x
Convert 1 to fraction \frac{4}{4}.
-\frac{1}{3}x+\frac{1}{2}=\frac{1-4}{4}-\frac{3}{4}x
Since \frac{1}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}x+\frac{1}{2}=-\frac{3}{4}-\frac{3}{4}x
Subtract 4 from 1 to get -3.
-\frac{1}{3}x+\frac{1}{2}+\frac{3}{4}x=-\frac{3}{4}
Add \frac{3}{4}x to both sides.
\frac{5}{12}x+\frac{1}{2}=-\frac{3}{4}
Combine -\frac{1}{3}x and \frac{3}{4}x to get \frac{5}{12}x.
\frac{5}{12}x=-\frac{3}{4}-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
\frac{5}{12}x=-\frac{3}{4}-\frac{2}{4}
Least common multiple of 4 and 2 is 4. Convert -\frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{5}{12}x=\frac{-3-2}{4}
Since -\frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}x=-\frac{5}{4}
Subtract 2 from -3 to get -5.
x=-\frac{5}{4}\times \frac{12}{5}
Multiply both sides by \frac{12}{5}, the reciprocal of \frac{5}{12}.
x=\frac{-5\times 12}{4\times 5}
Multiply -\frac{5}{4} times \frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-60}{20}
Do the multiplications in the fraction \frac{-5\times 12}{4\times 5}.
x=-3
Divide -60 by 20 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}