Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{3}\times 5x+\frac{4}{3}\left(-2\right)=7\left(x-\left(5x-2\right)\right)
Use the distributive property to multiply \frac{4}{3} by 5x-2.
\frac{4\times 5}{3}x+\frac{4}{3}\left(-2\right)=7\left(x-\left(5x-2\right)\right)
Express \frac{4}{3}\times 5 as a single fraction.
\frac{20}{3}x+\frac{4}{3}\left(-2\right)=7\left(x-\left(5x-2\right)\right)
Multiply 4 and 5 to get 20.
\frac{20}{3}x+\frac{4\left(-2\right)}{3}=7\left(x-\left(5x-2\right)\right)
Express \frac{4}{3}\left(-2\right) as a single fraction.
\frac{20}{3}x+\frac{-8}{3}=7\left(x-\left(5x-2\right)\right)
Multiply 4 and -2 to get -8.
\frac{20}{3}x-\frac{8}{3}=7\left(x-\left(5x-2\right)\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\frac{20}{3}x-\frac{8}{3}=7\left(x-5x-\left(-2\right)\right)
To find the opposite of 5x-2, find the opposite of each term.
\frac{20}{3}x-\frac{8}{3}=7\left(x-5x+2\right)
The opposite of -2 is 2.
\frac{20}{3}x-\frac{8}{3}=7\left(-4x+2\right)
Combine x and -5x to get -4x.
\frac{20}{3}x-\frac{8}{3}=-28x+14
Use the distributive property to multiply 7 by -4x+2.
\frac{20}{3}x-\frac{8}{3}+28x=14
Add 28x to both sides.
\frac{104}{3}x-\frac{8}{3}=14
Combine \frac{20}{3}x and 28x to get \frac{104}{3}x.
\frac{104}{3}x=14+\frac{8}{3}
Add \frac{8}{3} to both sides.
\frac{104}{3}x=\frac{42}{3}+\frac{8}{3}
Convert 14 to fraction \frac{42}{3}.
\frac{104}{3}x=\frac{42+8}{3}
Since \frac{42}{3} and \frac{8}{3} have the same denominator, add them by adding their numerators.
\frac{104}{3}x=\frac{50}{3}
Add 42 and 8 to get 50.
x=\frac{50}{3}\times \frac{3}{104}
Multiply both sides by \frac{3}{104}, the reciprocal of \frac{104}{3}.
x=\frac{50\times 3}{3\times 104}
Multiply \frac{50}{3} times \frac{3}{104} by multiplying numerator times numerator and denominator times denominator.
x=\frac{50}{104}
Cancel out 3 in both numerator and denominator.
x=\frac{25}{52}
Reduce the fraction \frac{50}{104} to lowest terms by extracting and canceling out 2.