Solve for x
x=\frac{25}{52}\approx 0.480769231
Graph
Share
Copied to clipboard
\frac{4}{3}\times 5x+\frac{4}{3}\left(-2\right)=7\left(x-\left(5x-2\right)\right)
Use the distributive property to multiply \frac{4}{3} by 5x-2.
\frac{4\times 5}{3}x+\frac{4}{3}\left(-2\right)=7\left(x-\left(5x-2\right)\right)
Express \frac{4}{3}\times 5 as a single fraction.
\frac{20}{3}x+\frac{4}{3}\left(-2\right)=7\left(x-\left(5x-2\right)\right)
Multiply 4 and 5 to get 20.
\frac{20}{3}x+\frac{4\left(-2\right)}{3}=7\left(x-\left(5x-2\right)\right)
Express \frac{4}{3}\left(-2\right) as a single fraction.
\frac{20}{3}x+\frac{-8}{3}=7\left(x-\left(5x-2\right)\right)
Multiply 4 and -2 to get -8.
\frac{20}{3}x-\frac{8}{3}=7\left(x-\left(5x-2\right)\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\frac{20}{3}x-\frac{8}{3}=7\left(x-5x-\left(-2\right)\right)
To find the opposite of 5x-2, find the opposite of each term.
\frac{20}{3}x-\frac{8}{3}=7\left(x-5x+2\right)
The opposite of -2 is 2.
\frac{20}{3}x-\frac{8}{3}=7\left(-4x+2\right)
Combine x and -5x to get -4x.
\frac{20}{3}x-\frac{8}{3}=-28x+14
Use the distributive property to multiply 7 by -4x+2.
\frac{20}{3}x-\frac{8}{3}+28x=14
Add 28x to both sides.
\frac{104}{3}x-\frac{8}{3}=14
Combine \frac{20}{3}x and 28x to get \frac{104}{3}x.
\frac{104}{3}x=14+\frac{8}{3}
Add \frac{8}{3} to both sides.
\frac{104}{3}x=\frac{42}{3}+\frac{8}{3}
Convert 14 to fraction \frac{42}{3}.
\frac{104}{3}x=\frac{42+8}{3}
Since \frac{42}{3} and \frac{8}{3} have the same denominator, add them by adding their numerators.
\frac{104}{3}x=\frac{50}{3}
Add 42 and 8 to get 50.
x=\frac{50}{3}\times \frac{3}{104}
Multiply both sides by \frac{3}{104}, the reciprocal of \frac{104}{3}.
x=\frac{50\times 3}{3\times 104}
Multiply \frac{50}{3} times \frac{3}{104} by multiplying numerator times numerator and denominator times denominator.
x=\frac{50}{104}
Cancel out 3 in both numerator and denominator.
x=\frac{25}{52}
Reduce the fraction \frac{50}{104} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}