Evaluate
-3x-\frac{61}{6}
Expand
-3x-\frac{61}{6}
Graph
Share
Copied to clipboard
\frac{4}{3}\times \frac{3}{2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Use the distributive property to multiply \frac{4}{3} by \frac{3}{2}x-2.
\frac{4\times 3}{3\times 2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Multiply \frac{4}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Cancel out 3 in both numerator and denominator.
2x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Divide 4 by 2 to get 2.
2x+\frac{4\left(-2\right)}{3}-\frac{5}{2}\left(2x+3\right)
Express \frac{4}{3}\left(-2\right) as a single fraction.
2x+\frac{-8}{3}-\frac{5}{2}\left(2x+3\right)
Multiply 4 and -2 to get -8.
2x-\frac{8}{3}-\frac{5}{2}\left(2x+3\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
2x-\frac{8}{3}-\frac{5}{2}\times 2x-\frac{5}{2}\times 3
Use the distributive property to multiply -\frac{5}{2} by 2x+3.
2x-\frac{8}{3}-5x-\frac{5}{2}\times 3
Cancel out 2 and 2.
2x-\frac{8}{3}-5x+\frac{-5\times 3}{2}
Express -\frac{5}{2}\times 3 as a single fraction.
2x-\frac{8}{3}-5x+\frac{-15}{2}
Multiply -5 and 3 to get -15.
2x-\frac{8}{3}-5x-\frac{15}{2}
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
-3x-\frac{8}{3}-\frac{15}{2}
Combine 2x and -5x to get -3x.
-3x-\frac{16}{6}-\frac{45}{6}
Least common multiple of 3 and 2 is 6. Convert -\frac{8}{3} and \frac{15}{2} to fractions with denominator 6.
-3x+\frac{-16-45}{6}
Since -\frac{16}{6} and \frac{45}{6} have the same denominator, subtract them by subtracting their numerators.
-3x-\frac{61}{6}
Subtract 45 from -16 to get -61.
\frac{4}{3}\times \frac{3}{2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Use the distributive property to multiply \frac{4}{3} by \frac{3}{2}x-2.
\frac{4\times 3}{3\times 2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Multiply \frac{4}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Cancel out 3 in both numerator and denominator.
2x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Divide 4 by 2 to get 2.
2x+\frac{4\left(-2\right)}{3}-\frac{5}{2}\left(2x+3\right)
Express \frac{4}{3}\left(-2\right) as a single fraction.
2x+\frac{-8}{3}-\frac{5}{2}\left(2x+3\right)
Multiply 4 and -2 to get -8.
2x-\frac{8}{3}-\frac{5}{2}\left(2x+3\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
2x-\frac{8}{3}-\frac{5}{2}\times 2x-\frac{5}{2}\times 3
Use the distributive property to multiply -\frac{5}{2} by 2x+3.
2x-\frac{8}{3}-5x-\frac{5}{2}\times 3
Cancel out 2 and 2.
2x-\frac{8}{3}-5x+\frac{-5\times 3}{2}
Express -\frac{5}{2}\times 3 as a single fraction.
2x-\frac{8}{3}-5x+\frac{-15}{2}
Multiply -5 and 3 to get -15.
2x-\frac{8}{3}-5x-\frac{15}{2}
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
-3x-\frac{8}{3}-\frac{15}{2}
Combine 2x and -5x to get -3x.
-3x-\frac{16}{6}-\frac{45}{6}
Least common multiple of 3 and 2 is 6. Convert -\frac{8}{3} and \frac{15}{2} to fractions with denominator 6.
-3x+\frac{-16-45}{6}
Since -\frac{16}{6} and \frac{45}{6} have the same denominator, subtract them by subtracting their numerators.
-3x-\frac{61}{6}
Subtract 45 from -16 to get -61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}