Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}-\frac{4}{\sqrt{2}}
Rationalize the denominator of \frac{4}{2-\sqrt{2}} by multiplying numerator and denominator by 2+\sqrt{2}.
\frac{4\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}-\frac{4}{\sqrt{2}}
Consider \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(2+\sqrt{2}\right)}{4-2}-\frac{4}{\sqrt{2}}
Square 2. Square \sqrt{2}.
\frac{4\left(2+\sqrt{2}\right)}{2}-\frac{4}{\sqrt{2}}
Subtract 2 from 4 to get 2.
2\left(2+\sqrt{2}\right)-\frac{4}{\sqrt{2}}
Divide 4\left(2+\sqrt{2}\right) by 2 to get 2\left(2+\sqrt{2}\right).
2\left(2+\sqrt{2}\right)-\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{4}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\left(2+\sqrt{2}\right)-\frac{4\sqrt{2}}{2}
The square of \sqrt{2} is 2.
2\left(2+\sqrt{2}\right)-2\sqrt{2}
Divide 4\sqrt{2} by 2 to get 2\sqrt{2}.
4+2\sqrt{2}-2\sqrt{2}
Use the distributive property to multiply 2 by 2+\sqrt{2}.
4
Subtract 2\sqrt{2} from 2\sqrt{2} to get 0.