Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(2-\sqrt{10}\right)}{\left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right)}
Rationalize the denominator of \frac{4}{2+\sqrt{10}} by multiplying numerator and denominator by 2-\sqrt{10}.
\frac{4\left(2-\sqrt{10}\right)}{2^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(2-\sqrt{10}\right)}{4-10}
Square 2. Square \sqrt{10}.
\frac{4\left(2-\sqrt{10}\right)}{-6}
Subtract 10 from 4 to get -6.
-\frac{2}{3}\left(2-\sqrt{10}\right)
Divide 4\left(2-\sqrt{10}\right) by -6 to get -\frac{2}{3}\left(2-\sqrt{10}\right).
-\frac{2}{3}\times 2-\frac{2}{3}\left(-1\right)\sqrt{10}
Use the distributive property to multiply -\frac{2}{3} by 2-\sqrt{10}.
\frac{-2\times 2}{3}-\frac{2}{3}\left(-1\right)\sqrt{10}
Express -\frac{2}{3}\times 2 as a single fraction.
\frac{-4}{3}-\frac{2}{3}\left(-1\right)\sqrt{10}
Multiply -2 and 2 to get -4.
-\frac{4}{3}-\frac{2}{3}\left(-1\right)\sqrt{10}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{4}{3}+\frac{2}{3}\sqrt{10}
Multiply -\frac{2}{3} and -1 to get \frac{2}{3}.