Evaluate
\frac{2\left(\sqrt{10}-2\right)}{3}\approx 0.774851773
Share
Copied to clipboard
\frac{4\left(2-\sqrt{10}\right)}{\left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right)}
Rationalize the denominator of \frac{4}{2+\sqrt{10}} by multiplying numerator and denominator by 2-\sqrt{10}.
\frac{4\left(2-\sqrt{10}\right)}{2^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(2-\sqrt{10}\right)}{4-10}
Square 2. Square \sqrt{10}.
\frac{4\left(2-\sqrt{10}\right)}{-6}
Subtract 10 from 4 to get -6.
-\frac{2}{3}\left(2-\sqrt{10}\right)
Divide 4\left(2-\sqrt{10}\right) by -6 to get -\frac{2}{3}\left(2-\sqrt{10}\right).
-\frac{2}{3}\times 2-\frac{2}{3}\left(-1\right)\sqrt{10}
Use the distributive property to multiply -\frac{2}{3} by 2-\sqrt{10}.
\frac{-2\times 2}{3}-\frac{2}{3}\left(-1\right)\sqrt{10}
Express -\frac{2}{3}\times 2 as a single fraction.
\frac{-4}{3}-\frac{2}{3}\left(-1\right)\sqrt{10}
Multiply -2 and 2 to get -4.
-\frac{4}{3}-\frac{2}{3}\left(-1\right)\sqrt{10}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{4}{3}+\frac{2}{3}\sqrt{10}
Multiply -\frac{2}{3} and -1 to get \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}