Evaluate
\frac{x}{4}-\frac{46}{45}
Factor
\frac{45x-184}{180}
Graph
Share
Copied to clipboard
\frac{1}{4}x-\frac{2}{9}-\frac{4}{5}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
\frac{1}{4}x-\frac{10}{45}-\frac{36}{45}
Least common multiple of 9 and 5 is 45. Convert -\frac{2}{9} and \frac{4}{5} to fractions with denominator 45.
\frac{1}{4}x+\frac{-10-36}{45}
Since -\frac{10}{45} and \frac{36}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}x-\frac{46}{45}
Subtract 36 from -10 to get -46.
\frac{45x-184}{180}
Factor out \frac{1}{180}.
45x-184
Consider 45x-40-144. Multiply and combine like terms.
\frac{45x-184}{180}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}