Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(\sqrt{7}-\sqrt{11}\right)}{\left(\sqrt{7}+\sqrt{11}\right)\left(\sqrt{7}-\sqrt{11}\right)}+\sqrt{99}-\sqrt{63}
Rationalize the denominator of \frac{4}{\sqrt{7}+\sqrt{11}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{11}.
\frac{4\left(\sqrt{7}-\sqrt{11}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{11}\right)^{2}}+\sqrt{99}-\sqrt{63}
Consider \left(\sqrt{7}+\sqrt{11}\right)\left(\sqrt{7}-\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{7}-\sqrt{11}\right)}{7-11}+\sqrt{99}-\sqrt{63}
Square \sqrt{7}. Square \sqrt{11}.
\frac{4\left(\sqrt{7}-\sqrt{11}\right)}{-4}+\sqrt{99}-\sqrt{63}
Subtract 11 from 7 to get -4.
-\left(\sqrt{7}-\sqrt{11}\right)+\sqrt{99}-\sqrt{63}
Cancel out -4 and -4.
-\left(\sqrt{7}-\sqrt{11}\right)+3\sqrt{11}-\sqrt{63}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
-\left(\sqrt{7}-\sqrt{11}\right)+3\sqrt{11}-3\sqrt{7}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
-\sqrt{7}-\left(-\sqrt{11}\right)+3\sqrt{11}-3\sqrt{7}
To find the opposite of \sqrt{7}-\sqrt{11}, find the opposite of each term.
-\sqrt{7}+\sqrt{11}+3\sqrt{11}-3\sqrt{7}
The opposite of -\sqrt{11} is \sqrt{11}.
-\sqrt{7}+4\sqrt{11}-3\sqrt{7}
Combine \sqrt{11} and 3\sqrt{11} to get 4\sqrt{11}.
-4\sqrt{7}+4\sqrt{11}
Combine -\sqrt{7} and -3\sqrt{7} to get -4\sqrt{7}.