Evaluate
\frac{12xy}{3x+4y}
Differentiate w.r.t. x
48\times \left(\frac{y}{3x+4y}\right)^{2}
Share
Copied to clipboard
\frac{4}{\frac{4\times 2y}{6xy}+\frac{2\times 3x}{6xy}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x and 2y is 6xy. Multiply \frac{4}{3x} times \frac{2y}{2y}. Multiply \frac{2}{2y} times \frac{3x}{3x}.
\frac{4}{\frac{4\times 2y+2\times 3x}{6xy}}
Since \frac{4\times 2y}{6xy} and \frac{2\times 3x}{6xy} have the same denominator, add them by adding their numerators.
\frac{4}{\frac{8y+6x}{6xy}}
Do the multiplications in 4\times 2y+2\times 3x.
\frac{4}{\frac{2\left(3x+4y\right)}{6xy}}
Factor the expressions that are not already factored in \frac{8y+6x}{6xy}.
\frac{4}{\frac{3x+4y}{3xy}}
Cancel out 2 in both numerator and denominator.
\frac{4\times 3xy}{3x+4y}
Divide 4 by \frac{3x+4y}{3xy} by multiplying 4 by the reciprocal of \frac{3x+4y}{3xy}.
\frac{12xy}{3x+4y}
Multiply 4 and 3 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}