Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(36-36\sqrt{3}+9\left(\sqrt{3}\right)^{2}\right)+1}{12-6\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-3\sqrt{3}\right)^{2}.
\frac{4\left(36-36\sqrt{3}+9\times 3\right)+1}{12-6\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{4\left(36-36\sqrt{3}+27\right)+1}{12-6\sqrt{3}}
Multiply 9 and 3 to get 27.
\frac{4\left(63-36\sqrt{3}\right)+1}{12-6\sqrt{3}}
Add 36 and 27 to get 63.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{\left(12-6\sqrt{3}\right)\left(12+6\sqrt{3}\right)}
Rationalize the denominator of \frac{4\left(63-36\sqrt{3}\right)+1}{12-6\sqrt{3}} by multiplying numerator and denominator by 12+6\sqrt{3}.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{12^{2}-\left(-6\sqrt{3}\right)^{2}}
Consider \left(12-6\sqrt{3}\right)\left(12+6\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-\left(-6\sqrt{3}\right)^{2}}
Calculate 12 to the power of 2 and get 144.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-\left(-6\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-6\sqrt{3}\right)^{2}.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-36\left(\sqrt{3}\right)^{2}}
Calculate -6 to the power of 2 and get 36.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-36\times 3}
The square of \sqrt{3} is 3.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-108}
Multiply 36 and 3 to get 108.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{36}
Subtract 108 from 144 to get 36.
\frac{\left(252-144\sqrt{3}+1\right)\left(12+6\sqrt{3}\right)}{36}
Use the distributive property to multiply 4 by 63-36\sqrt{3}.
\frac{\left(253-144\sqrt{3}\right)\left(12+6\sqrt{3}\right)}{36}
Add 252 and 1 to get 253.
\frac{3036-210\sqrt{3}-864\left(\sqrt{3}\right)^{2}}{36}
Use the distributive property to multiply 253-144\sqrt{3} by 12+6\sqrt{3} and combine like terms.
\frac{3036-210\sqrt{3}-864\times 3}{36}
The square of \sqrt{3} is 3.
\frac{3036-210\sqrt{3}-2592}{36}
Multiply -864 and 3 to get -2592.
\frac{444-210\sqrt{3}}{36}
Subtract 2592 from 3036 to get 444.