Evaluate
5-\sqrt{22}\approx 0.30958424
Share
Copied to clipboard
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{\left(3\sqrt{2}+\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}
Rationalize the denominator of \frac{4\sqrt{2}-\sqrt{11}}{3\sqrt{2}+\sqrt{11}} by multiplying numerator and denominator by 3\sqrt{2}-\sqrt{11}.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{\left(3\sqrt{2}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(3\sqrt{2}+\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{9\left(\sqrt{2}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{9\times 2-\left(\sqrt{11}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{18-\left(\sqrt{11}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{18-11}
The square of \sqrt{11} is 11.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{7}
Subtract 11 from 18 to get 7.
\frac{12\left(\sqrt{2}\right)^{2}-4\sqrt{11}\sqrt{2}-3\sqrt{11}\sqrt{2}+\left(\sqrt{11}\right)^{2}}{7}
Apply the distributive property by multiplying each term of 4\sqrt{2}-\sqrt{11} by each term of 3\sqrt{2}-\sqrt{11}.
\frac{12\times 2-4\sqrt{11}\sqrt{2}-3\sqrt{11}\sqrt{2}+\left(\sqrt{11}\right)^{2}}{7}
The square of \sqrt{2} is 2.
\frac{24-4\sqrt{11}\sqrt{2}-3\sqrt{11}\sqrt{2}+\left(\sqrt{11}\right)^{2}}{7}
Multiply 12 and 2 to get 24.
\frac{24-4\sqrt{22}-3\sqrt{11}\sqrt{2}+\left(\sqrt{11}\right)^{2}}{7}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
\frac{24-4\sqrt{22}-3\sqrt{22}+\left(\sqrt{11}\right)^{2}}{7}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
\frac{24-7\sqrt{22}+\left(\sqrt{11}\right)^{2}}{7}
Combine -4\sqrt{22} and -3\sqrt{22} to get -7\sqrt{22}.
\frac{24-7\sqrt{22}+11}{7}
The square of \sqrt{11} is 11.
\frac{35-7\sqrt{22}}{7}
Add 24 and 11 to get 35.
5-\sqrt{22}
Divide each term of 35-7\sqrt{22} by 7 to get 5-\sqrt{22}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}