Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{\left(3\sqrt{2}+\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}
Rationalize the denominator of \frac{4\sqrt{2}-\sqrt{11}}{3\sqrt{2}+\sqrt{11}} by multiplying numerator and denominator by 3\sqrt{2}-\sqrt{11}.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{\left(3\sqrt{2}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(3\sqrt{2}+\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{9\left(\sqrt{2}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{9\times 2-\left(\sqrt{11}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{18-\left(\sqrt{11}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{18-11}
The square of \sqrt{11} is 11.
\frac{\left(4\sqrt{2}-\sqrt{11}\right)\left(3\sqrt{2}-\sqrt{11}\right)}{7}
Subtract 11 from 18 to get 7.
\frac{12\left(\sqrt{2}\right)^{2}-4\sqrt{11}\sqrt{2}-3\sqrt{11}\sqrt{2}+\left(\sqrt{11}\right)^{2}}{7}
Apply the distributive property by multiplying each term of 4\sqrt{2}-\sqrt{11} by each term of 3\sqrt{2}-\sqrt{11}.
\frac{12\times 2-4\sqrt{11}\sqrt{2}-3\sqrt{11}\sqrt{2}+\left(\sqrt{11}\right)^{2}}{7}
The square of \sqrt{2} is 2.
\frac{24-4\sqrt{11}\sqrt{2}-3\sqrt{11}\sqrt{2}+\left(\sqrt{11}\right)^{2}}{7}
Multiply 12 and 2 to get 24.
\frac{24-4\sqrt{22}-3\sqrt{11}\sqrt{2}+\left(\sqrt{11}\right)^{2}}{7}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
\frac{24-4\sqrt{22}-3\sqrt{22}+\left(\sqrt{11}\right)^{2}}{7}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
\frac{24-7\sqrt{22}+\left(\sqrt{11}\right)^{2}}{7}
Combine -4\sqrt{22} and -3\sqrt{22} to get -7\sqrt{22}.
\frac{24-7\sqrt{22}+11}{7}
The square of \sqrt{11} is 11.
\frac{35-7\sqrt{22}}{7}
Add 24 and 11 to get 35.
5-\sqrt{22}
Divide each term of 35-7\sqrt{22} by 7 to get 5-\sqrt{22}.