Solve for x
x=\frac{2\sqrt{17905}}{155}-\frac{40}{31}\approx 0.436252467
x=-\frac{2\sqrt{17905}}{155}-\frac{40}{31}\approx -3.016897628
Graph
Share
Copied to clipboard
\frac{8\times 10^{-9}}{x^{2}}=\frac{3.1\times 10^{-9}}{0.51-x}
Multiply 4 and 2 to get 8.
\frac{8\times \frac{1}{1000000000}}{x^{2}}=\frac{3.1\times 10^{-9}}{0.51-x}
Calculate 10 to the power of -9 and get \frac{1}{1000000000}.
\frac{\frac{1}{125000000}}{x^{2}}=\frac{3.1\times 10^{-9}}{0.51-x}
Multiply 8 and \frac{1}{1000000000} to get \frac{1}{125000000}.
\frac{1}{125000000x^{2}}=\frac{3.1\times 10^{-9}}{0.51-x}
Express \frac{\frac{1}{125000000}}{x^{2}} as a single fraction.
\frac{1}{125000000x^{2}}=\frac{3.1\times \frac{1}{1000000000}}{0.51-x}
Calculate 10 to the power of -9 and get \frac{1}{1000000000}.
\frac{1}{125000000x^{2}}=\frac{\frac{31}{10000000000}}{0.51-x}
Multiply 3.1 and \frac{1}{1000000000} to get \frac{31}{10000000000}.
\frac{1}{125000000x^{2}}=\frac{31}{10000000000\left(0.51-x\right)}
Express \frac{\frac{31}{10000000000}}{0.51-x} as a single fraction.
\frac{1}{125000000x^{2}}=\frac{31}{5100000000-10000000000x}
Use the distributive property to multiply 10000000000 by 0.51-x.
\frac{1}{125000000x^{2}}-\frac{31}{5100000000-10000000000x}=0
Subtract \frac{31}{5100000000-10000000000x} from both sides.
\frac{1}{125000000x^{2}}-\frac{31}{100000000\left(-100x+51\right)}=0
Factor 5100000000-10000000000x.
\frac{4\left(100x-51\right)}{500000000\left(100x-51\right)x^{2}}-\frac{31\left(-5\right)x^{2}}{500000000\left(100x-51\right)x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 125000000x^{2} and 100000000\left(-100x+51\right) is 500000000\left(100x-51\right)x^{2}. Multiply \frac{1}{125000000x^{2}} times \frac{4\left(100x-51\right)}{4\left(100x-51\right)}. Multiply \frac{31}{100000000\left(-100x+51\right)} times \frac{-5x^{2}}{-5x^{2}}.
\frac{4\left(100x-51\right)-31\left(-5\right)x^{2}}{500000000\left(100x-51\right)x^{2}}=0
Since \frac{4\left(100x-51\right)}{500000000\left(100x-51\right)x^{2}} and \frac{31\left(-5\right)x^{2}}{500000000\left(100x-51\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{400x-204+155x^{2}}{500000000\left(100x-51\right)x^{2}}=0
Do the multiplications in 4\left(100x-51\right)-31\left(-5\right)x^{2}.
\frac{155\left(x-\left(-\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)\left(x-\left(\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)}{500000000\left(100x-51\right)x^{2}}=0
Factor the expressions that are not already factored in \frac{400x-204+155x^{2}}{500000000\left(100x-51\right)x^{2}}.
\frac{31\left(x-\left(-\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)\left(x-\left(\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)}{100000000\left(100x-51\right)x^{2}}=0
Cancel out 5 in both numerator and denominator.
31\left(x-\left(-\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)\left(x-\left(\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)=0
Variable x cannot be equal to any of the values 0,\frac{51}{100} since division by zero is not defined. Multiply both sides of the equation by 100000000\left(100x-51\right)x^{2}.
31\left(x+\frac{2}{155}\sqrt{17905}+\frac{40}{31}\right)\left(x-\left(\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)=0
To find the opposite of -\frac{2}{155}\sqrt{17905}-\frac{40}{31}, find the opposite of each term.
31\left(x+\frac{2}{155}\sqrt{17905}+\frac{40}{31}\right)\left(x-\frac{2}{155}\sqrt{17905}+\frac{40}{31}\right)=0
To find the opposite of \frac{2}{155}\sqrt{17905}-\frac{40}{31}, find the opposite of each term.
\left(31x+\frac{2}{5}\sqrt{17905}+40\right)\left(x-\frac{2}{155}\sqrt{17905}+\frac{40}{31}\right)=0
Use the distributive property to multiply 31 by x+\frac{2}{155}\sqrt{17905}+\frac{40}{31}.
31x^{2}+80x-\frac{4}{775}\left(\sqrt{17905}\right)^{2}+\frac{1600}{31}=0
Use the distributive property to multiply 31x+\frac{2}{5}\sqrt{17905}+40 by x-\frac{2}{155}\sqrt{17905}+\frac{40}{31} and combine like terms.
31x^{2}+80x-\frac{4}{775}\times 17905+\frac{1600}{31}=0
The square of \sqrt{17905} is 17905.
31x^{2}+80x-\frac{14324}{155}+\frac{1600}{31}=0
Multiply -\frac{4}{775} and 17905 to get -\frac{14324}{155}.
31x^{2}+80x-\frac{204}{5}=0
Add -\frac{14324}{155} and \frac{1600}{31} to get -\frac{204}{5}.
x=\frac{-80±\sqrt{80^{2}-4\times 31\left(-\frac{204}{5}\right)}}{2\times 31}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 31 for a, 80 for b, and -\frac{204}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\times 31\left(-\frac{204}{5}\right)}}{2\times 31}
Square 80.
x=\frac{-80±\sqrt{6400-124\left(-\frac{204}{5}\right)}}{2\times 31}
Multiply -4 times 31.
x=\frac{-80±\sqrt{6400+\frac{25296}{5}}}{2\times 31}
Multiply -124 times -\frac{204}{5}.
x=\frac{-80±\sqrt{\frac{57296}{5}}}{2\times 31}
Add 6400 to \frac{25296}{5}.
x=\frac{-80±\frac{4\sqrt{17905}}{5}}{2\times 31}
Take the square root of \frac{57296}{5}.
x=\frac{-80±\frac{4\sqrt{17905}}{5}}{62}
Multiply 2 times 31.
x=\frac{\frac{4\sqrt{17905}}{5}-80}{62}
Now solve the equation x=\frac{-80±\frac{4\sqrt{17905}}{5}}{62} when ± is plus. Add -80 to \frac{4\sqrt{17905}}{5}.
x=\frac{2\sqrt{17905}}{155}-\frac{40}{31}
Divide -80+\frac{4\sqrt{17905}}{5} by 62.
x=\frac{-\frac{4\sqrt{17905}}{5}-80}{62}
Now solve the equation x=\frac{-80±\frac{4\sqrt{17905}}{5}}{62} when ± is minus. Subtract \frac{4\sqrt{17905}}{5} from -80.
x=-\frac{2\sqrt{17905}}{155}-\frac{40}{31}
Divide -80-\frac{4\sqrt{17905}}{5} by 62.
x=\frac{2\sqrt{17905}}{155}-\frac{40}{31} x=-\frac{2\sqrt{17905}}{155}-\frac{40}{31}
The equation is now solved.
\frac{8\times 10^{-9}}{x^{2}}=\frac{3.1\times 10^{-9}}{0.51-x}
Multiply 4 and 2 to get 8.
\frac{8\times \frac{1}{1000000000}}{x^{2}}=\frac{3.1\times 10^{-9}}{0.51-x}
Calculate 10 to the power of -9 and get \frac{1}{1000000000}.
\frac{\frac{1}{125000000}}{x^{2}}=\frac{3.1\times 10^{-9}}{0.51-x}
Multiply 8 and \frac{1}{1000000000} to get \frac{1}{125000000}.
\frac{1}{125000000x^{2}}=\frac{3.1\times 10^{-9}}{0.51-x}
Express \frac{\frac{1}{125000000}}{x^{2}} as a single fraction.
\frac{1}{125000000x^{2}}=\frac{3.1\times \frac{1}{1000000000}}{0.51-x}
Calculate 10 to the power of -9 and get \frac{1}{1000000000}.
\frac{1}{125000000x^{2}}=\frac{\frac{31}{10000000000}}{0.51-x}
Multiply 3.1 and \frac{1}{1000000000} to get \frac{31}{10000000000}.
\frac{1}{125000000x^{2}}=\frac{31}{10000000000\left(0.51-x\right)}
Express \frac{\frac{31}{10000000000}}{0.51-x} as a single fraction.
\frac{1}{125000000x^{2}}=\frac{31}{5100000000-10000000000x}
Use the distributive property to multiply 10000000000 by 0.51-x.
\frac{1}{125000000x^{2}}-\frac{31}{5100000000-10000000000x}=0
Subtract \frac{31}{5100000000-10000000000x} from both sides.
\frac{1}{125000000x^{2}}-\frac{31}{100000000\left(-100x+51\right)}=0
Factor 5100000000-10000000000x.
\frac{4\left(100x-51\right)}{500000000\left(100x-51\right)x^{2}}-\frac{31\left(-5\right)x^{2}}{500000000\left(100x-51\right)x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 125000000x^{2} and 100000000\left(-100x+51\right) is 500000000\left(100x-51\right)x^{2}. Multiply \frac{1}{125000000x^{2}} times \frac{4\left(100x-51\right)}{4\left(100x-51\right)}. Multiply \frac{31}{100000000\left(-100x+51\right)} times \frac{-5x^{2}}{-5x^{2}}.
\frac{4\left(100x-51\right)-31\left(-5\right)x^{2}}{500000000\left(100x-51\right)x^{2}}=0
Since \frac{4\left(100x-51\right)}{500000000\left(100x-51\right)x^{2}} and \frac{31\left(-5\right)x^{2}}{500000000\left(100x-51\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{400x-204+155x^{2}}{500000000\left(100x-51\right)x^{2}}=0
Do the multiplications in 4\left(100x-51\right)-31\left(-5\right)x^{2}.
\frac{155\left(x-\left(-\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)\left(x-\left(\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)}{500000000\left(100x-51\right)x^{2}}=0
Factor the expressions that are not already factored in \frac{400x-204+155x^{2}}{500000000\left(100x-51\right)x^{2}}.
\frac{31\left(x-\left(-\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)\left(x-\left(\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)}{100000000\left(100x-51\right)x^{2}}=0
Cancel out 5 in both numerator and denominator.
31\left(x-\left(-\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)\left(x-\left(\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)=0
Variable x cannot be equal to any of the values 0,\frac{51}{100} since division by zero is not defined. Multiply both sides of the equation by 100000000\left(100x-51\right)x^{2}.
31\left(x+\frac{2}{155}\sqrt{17905}+\frac{40}{31}\right)\left(x-\left(\frac{2}{155}\sqrt{17905}-\frac{40}{31}\right)\right)=0
To find the opposite of -\frac{2}{155}\sqrt{17905}-\frac{40}{31}, find the opposite of each term.
31\left(x+\frac{2}{155}\sqrt{17905}+\frac{40}{31}\right)\left(x-\frac{2}{155}\sqrt{17905}+\frac{40}{31}\right)=0
To find the opposite of \frac{2}{155}\sqrt{17905}-\frac{40}{31}, find the opposite of each term.
\left(31x+\frac{2}{5}\sqrt{17905}+40\right)\left(x-\frac{2}{155}\sqrt{17905}+\frac{40}{31}\right)=0
Use the distributive property to multiply 31 by x+\frac{2}{155}\sqrt{17905}+\frac{40}{31}.
31x^{2}+80x-\frac{4}{775}\left(\sqrt{17905}\right)^{2}+\frac{1600}{31}=0
Use the distributive property to multiply 31x+\frac{2}{5}\sqrt{17905}+40 by x-\frac{2}{155}\sqrt{17905}+\frac{40}{31} and combine like terms.
31x^{2}+80x-\frac{4}{775}\times 17905+\frac{1600}{31}=0
The square of \sqrt{17905} is 17905.
31x^{2}+80x-\frac{14324}{155}+\frac{1600}{31}=0
Multiply -\frac{4}{775} and 17905 to get -\frac{14324}{155}.
31x^{2}+80x-\frac{204}{5}=0
Add -\frac{14324}{155} and \frac{1600}{31} to get -\frac{204}{5}.
31x^{2}+80x=\frac{204}{5}
Add \frac{204}{5} to both sides. Anything plus zero gives itself.
\frac{31x^{2}+80x}{31}=\frac{\frac{204}{5}}{31}
Divide both sides by 31.
x^{2}+\frac{80}{31}x=\frac{\frac{204}{5}}{31}
Dividing by 31 undoes the multiplication by 31.
x^{2}+\frac{80}{31}x=\frac{204}{155}
Divide \frac{204}{5} by 31.
x^{2}+\frac{80}{31}x+\left(\frac{40}{31}\right)^{2}=\frac{204}{155}+\left(\frac{40}{31}\right)^{2}
Divide \frac{80}{31}, the coefficient of the x term, by 2 to get \frac{40}{31}. Then add the square of \frac{40}{31} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{80}{31}x+\frac{1600}{961}=\frac{204}{155}+\frac{1600}{961}
Square \frac{40}{31} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{80}{31}x+\frac{1600}{961}=\frac{14324}{4805}
Add \frac{204}{155} to \frac{1600}{961} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{40}{31}\right)^{2}=\frac{14324}{4805}
Factor x^{2}+\frac{80}{31}x+\frac{1600}{961}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{40}{31}\right)^{2}}=\sqrt{\frac{14324}{4805}}
Take the square root of both sides of the equation.
x+\frac{40}{31}=\frac{2\sqrt{17905}}{155} x+\frac{40}{31}=-\frac{2\sqrt{17905}}{155}
Simplify.
x=\frac{2\sqrt{17905}}{155}-\frac{40}{31} x=-\frac{2\sqrt{17905}}{155}-\frac{40}{31}
Subtract \frac{40}{31} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}