Evaluate
-\frac{2\sqrt{7}}{7}\approx -0.755928946
Share
Copied to clipboard
\frac{-16-24-16}{\sqrt{56}\sqrt{98}}
Multiply 4 and -4 to get -16. Multiply 6 and -4 to get -24. Multiply 2 and -8 to get -16.
\frac{-40-16}{\sqrt{56}\sqrt{98}}
Subtract 24 from -16 to get -40.
\frac{-56}{\sqrt{56}\sqrt{98}}
Subtract 16 from -40 to get -56.
\frac{-56}{2\sqrt{14}\sqrt{98}}
Factor 56=2^{2}\times 14. Rewrite the square root of the product \sqrt{2^{2}\times 14} as the product of square roots \sqrt{2^{2}}\sqrt{14}. Take the square root of 2^{2}.
\frac{-56}{2\sqrt{14}\times 7\sqrt{2}}
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
\frac{-56}{14\sqrt{14}\sqrt{2}}
Multiply 2 and 7 to get 14.
\frac{-56}{14\sqrt{2}\sqrt{7}\sqrt{2}}
Factor 14=2\times 7. Rewrite the square root of the product \sqrt{2\times 7} as the product of square roots \sqrt{2}\sqrt{7}.
\frac{-56}{14\times 2\sqrt{7}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-56\sqrt{7}}{14\times 2\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{-56}{14\times 2\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{-56\sqrt{7}}{14\times 2\times 7}
The square of \sqrt{7} is 7.
\frac{-2\sqrt{7}}{7}
Cancel out 2\times 14 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}