Solve for w
w=\frac{64}{y^{4}}
y\neq 0
Solve for y (complex solution)
y=2\sqrt{2}iw^{-\frac{1}{4}}
y=2\sqrt{2}w^{-\frac{1}{4}}
y=-2\sqrt{2}w^{-\frac{1}{4}}
y=-2\sqrt{2}iw^{-\frac{1}{4}}\text{, }w\neq 0
Solve for y
y=\frac{2\sqrt{2}}{\sqrt[4]{w}}
y=-\frac{2\sqrt{2}}{\sqrt[4]{w}}\text{, }w>0
Graph
Share
Copied to clipboard
4^{3}=wy^{4}
Multiply both sides of the equation by y^{4}.
64=wy^{4}
Calculate 4 to the power of 3 and get 64.
wy^{4}=64
Swap sides so that all variable terms are on the left hand side.
y^{4}w=64
The equation is in standard form.
\frac{y^{4}w}{y^{4}}=\frac{64}{y^{4}}
Divide both sides by y^{4}.
w=\frac{64}{y^{4}}
Dividing by y^{4} undoes the multiplication by y^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}