Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{\left(4+i\right)\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+i\right)\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 3+4i+3i+i^{2}}{10}
Multiply complex numbers 4+i and 3+i like you multiply binomials.
\frac{4\times 3+4i+3i-1}{10}
By definition, i^{2} is -1.
\frac{12+4i+3i-1}{10}
Do the multiplications in 4\times 3+4i+3i-1.
\frac{12-1+\left(4+3\right)i}{10}
Combine the real and imaginary parts in 12+4i+3i-1.
\frac{11+7i}{10}
Do the additions in 12-1+\left(4+3\right)i.
\frac{11}{10}+\frac{7}{10}i
Divide 11+7i by 10 to get \frac{11}{10}+\frac{7}{10}i.
Re(\frac{\left(4+i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{4+i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{\left(4+i\right)\left(3+i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+i\right)\left(3+i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 3+4i+3i+i^{2}}{10})
Multiply complex numbers 4+i and 3+i like you multiply binomials.
Re(\frac{4\times 3+4i+3i-1}{10})
By definition, i^{2} is -1.
Re(\frac{12+4i+3i-1}{10})
Do the multiplications in 4\times 3+4i+3i-1.
Re(\frac{12-1+\left(4+3\right)i}{10})
Combine the real and imaginary parts in 12+4i+3i-1.
Re(\frac{11+7i}{10})
Do the additions in 12-1+\left(4+3\right)i.
Re(\frac{11}{10}+\frac{7}{10}i)
Divide 11+7i by 10 to get \frac{11}{10}+\frac{7}{10}i.
\frac{11}{10}
The real part of \frac{11}{10}+\frac{7}{10}i is \frac{11}{10}.