Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{2-i}{1+i}
Multiply both numerator and denominator of \frac{4+i}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{3+5i}{2}+\frac{2-i}{1+i}
Do the multiplications in \frac{\left(4+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\frac{3}{2}+\frac{5}{2}i+\frac{2-i}{1+i}
Divide 3+5i by 2 to get \frac{3}{2}+\frac{5}{2}i.
\frac{3}{2}+\frac{5}{2}i+\frac{\left(2-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{2-i}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{3}{2}+\frac{5}{2}i+\frac{1-3i}{2}
Do the multiplications in \frac{\left(2-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\frac{3}{2}+\frac{5}{2}i+\left(\frac{1}{2}-\frac{3}{2}i\right)
Divide 1-3i by 2 to get \frac{1}{2}-\frac{3}{2}i.
2+i
Add \frac{3}{2}+\frac{5}{2}i and \frac{1}{2}-\frac{3}{2}i to get 2+i.
Re(\frac{\left(4+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{2-i}{1+i})
Multiply both numerator and denominator of \frac{4+i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{3+5i}{2}+\frac{2-i}{1+i})
Do the multiplications in \frac{\left(4+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(\frac{3}{2}+\frac{5}{2}i+\frac{2-i}{1+i})
Divide 3+5i by 2 to get \frac{3}{2}+\frac{5}{2}i.
Re(\frac{3}{2}+\frac{5}{2}i+\frac{\left(2-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{2-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{3}{2}+\frac{5}{2}i+\frac{1-3i}{2})
Do the multiplications in \frac{\left(2-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\frac{3}{2}+\frac{5}{2}i+\left(\frac{1}{2}-\frac{3}{2}i\right))
Divide 1-3i by 2 to get \frac{1}{2}-\frac{3}{2}i.
Re(2+i)
Add \frac{3}{2}+\frac{5}{2}i and \frac{1}{2}-\frac{3}{2}i to get 2+i.
2
The real part of 2+i is 2.