Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+6i\right)\left(3+7i\right)}{\left(3-7i\right)\left(3+7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+7i.
\frac{\left(4+6i\right)\left(3+7i\right)}{3^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+6i\right)\left(3+7i\right)}{58}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 3+4\times \left(7i\right)+6i\times 3+6\times 7i^{2}}{58}
Multiply complex numbers 4+6i and 3+7i like you multiply binomials.
\frac{4\times 3+4\times \left(7i\right)+6i\times 3+6\times 7\left(-1\right)}{58}
By definition, i^{2} is -1.
\frac{12+28i+18i-42}{58}
Do the multiplications in 4\times 3+4\times \left(7i\right)+6i\times 3+6\times 7\left(-1\right).
\frac{12-42+\left(28+18\right)i}{58}
Combine the real and imaginary parts in 12+28i+18i-42.
\frac{-30+46i}{58}
Do the additions in 12-42+\left(28+18\right)i.
-\frac{15}{29}+\frac{23}{29}i
Divide -30+46i by 58 to get -\frac{15}{29}+\frac{23}{29}i.
Re(\frac{\left(4+6i\right)\left(3+7i\right)}{\left(3-7i\right)\left(3+7i\right)})
Multiply both numerator and denominator of \frac{4+6i}{3-7i} by the complex conjugate of the denominator, 3+7i.
Re(\frac{\left(4+6i\right)\left(3+7i\right)}{3^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+6i\right)\left(3+7i\right)}{58})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 3+4\times \left(7i\right)+6i\times 3+6\times 7i^{2}}{58})
Multiply complex numbers 4+6i and 3+7i like you multiply binomials.
Re(\frac{4\times 3+4\times \left(7i\right)+6i\times 3+6\times 7\left(-1\right)}{58})
By definition, i^{2} is -1.
Re(\frac{12+28i+18i-42}{58})
Do the multiplications in 4\times 3+4\times \left(7i\right)+6i\times 3+6\times 7\left(-1\right).
Re(\frac{12-42+\left(28+18\right)i}{58})
Combine the real and imaginary parts in 12+28i+18i-42.
Re(\frac{-30+46i}{58})
Do the additions in 12-42+\left(28+18\right)i.
Re(-\frac{15}{29}+\frac{23}{29}i)
Divide -30+46i by 58 to get -\frac{15}{29}+\frac{23}{29}i.
-\frac{15}{29}
The real part of -\frac{15}{29}+\frac{23}{29}i is -\frac{15}{29}.