Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+5i\right)\left(2+7i\right)}{\left(2-7i\right)\left(2+7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+7i.
\frac{\left(4+5i\right)\left(2+7i\right)}{2^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+5i\right)\left(2+7i\right)}{53}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7i^{2}}{53}
Multiply complex numbers 4+5i and 2+7i like you multiply binomials.
\frac{4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7\left(-1\right)}{53}
By definition, i^{2} is -1.
\frac{8+28i+10i-35}{53}
Do the multiplications in 4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7\left(-1\right).
\frac{8-35+\left(28+10\right)i}{53}
Combine the real and imaginary parts in 8+28i+10i-35.
\frac{-27+38i}{53}
Do the additions in 8-35+\left(28+10\right)i.
-\frac{27}{53}+\frac{38}{53}i
Divide -27+38i by 53 to get -\frac{27}{53}+\frac{38}{53}i.
Re(\frac{\left(4+5i\right)\left(2+7i\right)}{\left(2-7i\right)\left(2+7i\right)})
Multiply both numerator and denominator of \frac{4+5i}{2-7i} by the complex conjugate of the denominator, 2+7i.
Re(\frac{\left(4+5i\right)\left(2+7i\right)}{2^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+5i\right)\left(2+7i\right)}{53})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7i^{2}}{53})
Multiply complex numbers 4+5i and 2+7i like you multiply binomials.
Re(\frac{4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7\left(-1\right)}{53})
By definition, i^{2} is -1.
Re(\frac{8+28i+10i-35}{53})
Do the multiplications in 4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7\left(-1\right).
Re(\frac{8-35+\left(28+10\right)i}{53})
Combine the real and imaginary parts in 8+28i+10i-35.
Re(\frac{-27+38i}{53})
Do the additions in 8-35+\left(28+10\right)i.
Re(-\frac{27}{53}+\frac{38}{53}i)
Divide -27+38i by 53 to get -\frac{27}{53}+\frac{38}{53}i.
-\frac{27}{53}
The real part of -\frac{27}{53}+\frac{38}{53}i is -\frac{27}{53}.