Evaluate
-\frac{27}{53}+\frac{38}{53}i\approx -0.509433962+0.716981132i
Real Part
-\frac{27}{53} = -0.5094339622641509
Share
Copied to clipboard
\frac{\left(4+5i\right)\left(2+7i\right)}{\left(2-7i\right)\left(2+7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+7i.
\frac{\left(4+5i\right)\left(2+7i\right)}{2^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+5i\right)\left(2+7i\right)}{53}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7i^{2}}{53}
Multiply complex numbers 4+5i and 2+7i like you multiply binomials.
\frac{4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7\left(-1\right)}{53}
By definition, i^{2} is -1.
\frac{8+28i+10i-35}{53}
Do the multiplications in 4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7\left(-1\right).
\frac{8-35+\left(28+10\right)i}{53}
Combine the real and imaginary parts in 8+28i+10i-35.
\frac{-27+38i}{53}
Do the additions in 8-35+\left(28+10\right)i.
-\frac{27}{53}+\frac{38}{53}i
Divide -27+38i by 53 to get -\frac{27}{53}+\frac{38}{53}i.
Re(\frac{\left(4+5i\right)\left(2+7i\right)}{\left(2-7i\right)\left(2+7i\right)})
Multiply both numerator and denominator of \frac{4+5i}{2-7i} by the complex conjugate of the denominator, 2+7i.
Re(\frac{\left(4+5i\right)\left(2+7i\right)}{2^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+5i\right)\left(2+7i\right)}{53})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7i^{2}}{53})
Multiply complex numbers 4+5i and 2+7i like you multiply binomials.
Re(\frac{4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7\left(-1\right)}{53})
By definition, i^{2} is -1.
Re(\frac{8+28i+10i-35}{53})
Do the multiplications in 4\times 2+4\times \left(7i\right)+5i\times 2+5\times 7\left(-1\right).
Re(\frac{8-35+\left(28+10\right)i}{53})
Combine the real and imaginary parts in 8+28i+10i-35.
Re(\frac{-27+38i}{53})
Do the additions in 8-35+\left(28+10\right)i.
Re(-\frac{27}{53}+\frac{38}{53}i)
Divide -27+38i by 53 to get -\frac{27}{53}+\frac{38}{53}i.
-\frac{27}{53}
The real part of -\frac{27}{53}+\frac{38}{53}i is -\frac{27}{53}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}