Evaluate
\frac{20}{17}+\frac{12}{17}i\approx 1.176470588+0.705882353i
Real Part
\frac{20}{17} = 1\frac{3}{17} = 1.1764705882352942
Share
Copied to clipboard
\frac{\left(4+4i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4-i.
\frac{\left(4+4i\right)\left(4-i\right)}{4^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+4i\right)\left(4-i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 4+4\left(-i\right)+4i\times 4+4\left(-1\right)i^{2}}{17}
Multiply complex numbers 4+4i and 4-i like you multiply binomials.
\frac{4\times 4+4\left(-i\right)+4i\times 4+4\left(-1\right)\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{16-4i+16i+4}{17}
Do the multiplications in 4\times 4+4\left(-i\right)+4i\times 4+4\left(-1\right)\left(-1\right).
\frac{16+4+\left(-4+16\right)i}{17}
Combine the real and imaginary parts in 16-4i+16i+4.
\frac{20+12i}{17}
Do the additions in 16+4+\left(-4+16\right)i.
\frac{20}{17}+\frac{12}{17}i
Divide 20+12i by 17 to get \frac{20}{17}+\frac{12}{17}i.
Re(\frac{\left(4+4i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)})
Multiply both numerator and denominator of \frac{4+4i}{4+i} by the complex conjugate of the denominator, 4-i.
Re(\frac{\left(4+4i\right)\left(4-i\right)}{4^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+4i\right)\left(4-i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 4+4\left(-i\right)+4i\times 4+4\left(-1\right)i^{2}}{17})
Multiply complex numbers 4+4i and 4-i like you multiply binomials.
Re(\frac{4\times 4+4\left(-i\right)+4i\times 4+4\left(-1\right)\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{16-4i+16i+4}{17})
Do the multiplications in 4\times 4+4\left(-i\right)+4i\times 4+4\left(-1\right)\left(-1\right).
Re(\frac{16+4+\left(-4+16\right)i}{17})
Combine the real and imaginary parts in 16-4i+16i+4.
Re(\frac{20+12i}{17})
Do the additions in 16+4+\left(-4+16\right)i.
Re(\frac{20}{17}+\frac{12}{17}i)
Divide 20+12i by 17 to get \frac{20}{17}+\frac{12}{17}i.
\frac{20}{17}
The real part of \frac{20}{17}+\frac{12}{17}i is \frac{20}{17}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}