Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1+5i\right)\left(-1-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -1-5i.
\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+3i\right)\left(-1-5i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)i^{2}}{26}
Multiply complex numbers 4+3i and -1-5i like you multiply binomials.
\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right)}{26}
By definition, i^{2} is -1.
\frac{-4-20i-3i+15}{26}
Do the multiplications in 4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right).
\frac{-4+15+\left(-20-3\right)i}{26}
Combine the real and imaginary parts in -4-20i-3i+15.
\frac{11-23i}{26}
Do the additions in -4+15+\left(-20-3\right)i.
\frac{11}{26}-\frac{23}{26}i
Divide 11-23i by 26 to get \frac{11}{26}-\frac{23}{26}i.
Re(\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1+5i\right)\left(-1-5i\right)})
Multiply both numerator and denominator of \frac{4+3i}{-1+5i} by the complex conjugate of the denominator, -1-5i.
Re(\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+3i\right)\left(-1-5i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)i^{2}}{26})
Multiply complex numbers 4+3i and -1-5i like you multiply binomials.
Re(\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right)}{26})
By definition, i^{2} is -1.
Re(\frac{-4-20i-3i+15}{26})
Do the multiplications in 4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right).
Re(\frac{-4+15+\left(-20-3\right)i}{26})
Combine the real and imaginary parts in -4-20i-3i+15.
Re(\frac{11-23i}{26})
Do the additions in -4+15+\left(-20-3\right)i.
Re(\frac{11}{26}-\frac{23}{26}i)
Divide 11-23i by 26 to get \frac{11}{26}-\frac{23}{26}i.
\frac{11}{26}
The real part of \frac{11}{26}-\frac{23}{26}i is \frac{11}{26}.