Evaluate
\frac{33}{5}=6.6
Factor
\frac{3 \cdot 11}{5} = 6\frac{3}{5} = 6.6
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)396}\\\end{array}
Use the 1^{st} digit 3 from dividend 396
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)396}\\\end{array}
Since 3 is less than 60, use the next digit 9 from dividend 396 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)396}\\\end{array}
Use the 2^{nd} digit 9 from dividend 396
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)396}\\\end{array}
Since 39 is less than 60, use the next digit 6 from dividend 396 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)396}\\\end{array}
Use the 3^{rd} digit 6 from dividend 396
\begin{array}{l}\phantom{60)}006\phantom{6}\\60\overline{)396}\\\phantom{60)}\underline{\phantom{}360\phantom{}}\\\phantom{60)9}36\\\end{array}
Find closest multiple of 60 to 396. We see that 6 \times 60 = 360 is the nearest. Now subtract 360 from 396 to get reminder 36. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }36
Since 36 is less than 60, stop the division. The reminder is 36. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}