Evaluate
\frac{193}{12}\approx 16.083333333
Factor
\frac{193}{2 ^ {2} \cdot 3} = 16\frac{1}{12} = 16.083333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)386}\\\end{array}
Use the 1^{st} digit 3 from dividend 386
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)386}\\\end{array}
Since 3 is less than 24, use the next digit 8 from dividend 386 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)386}\\\end{array}
Use the 2^{nd} digit 8 from dividend 386
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)386}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}14\\\end{array}
Find closest multiple of 24 to 38. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 38 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)386}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}146\\\end{array}
Use the 3^{rd} digit 6 from dividend 386
\begin{array}{l}\phantom{24)}016\phantom{6}\\24\overline{)386}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}146\\\phantom{24)}\underline{\phantom{}144\phantom{}}\\\phantom{24)99}2\\\end{array}
Find closest multiple of 24 to 146. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 146 to get reminder 2. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }2
Since 2 is less than 24, stop the division. The reminder is 2. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}