Solve for a
a=-\frac{b}{3}+\frac{17}{180}
Solve for b
b=\frac{17}{60}-3a
Share
Copied to clipboard
\frac{77}{20}=9a+3b+3
Reduce the fraction \frac{385}{100} to lowest terms by extracting and canceling out 5.
9a+3b+3=\frac{77}{20}
Swap sides so that all variable terms are on the left hand side.
9a+3=\frac{77}{20}-3b
Subtract 3b from both sides.
9a=\frac{77}{20}-3b-3
Subtract 3 from both sides.
9a=\frac{17}{20}-3b
Subtract 3 from \frac{77}{20} to get \frac{17}{20}.
\frac{9a}{9}=\frac{\frac{17}{20}-3b}{9}
Divide both sides by 9.
a=\frac{\frac{17}{20}-3b}{9}
Dividing by 9 undoes the multiplication by 9.
a=-\frac{b}{3}+\frac{17}{180}
Divide \frac{17}{20}-3b by 9.
\frac{77}{20}=9a+3b+3
Reduce the fraction \frac{385}{100} to lowest terms by extracting and canceling out 5.
9a+3b+3=\frac{77}{20}
Swap sides so that all variable terms are on the left hand side.
3b+3=\frac{77}{20}-9a
Subtract 9a from both sides.
3b=\frac{77}{20}-9a-3
Subtract 3 from both sides.
3b=\frac{17}{20}-9a
Subtract 3 from \frac{77}{20} to get \frac{17}{20}.
\frac{3b}{3}=\frac{\frac{17}{20}-9a}{3}
Divide both sides by 3.
b=\frac{\frac{17}{20}-9a}{3}
Dividing by 3 undoes the multiplication by 3.
b=\frac{17}{60}-3a
Divide \frac{17}{20}-9a by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}