\frac { 38000 + 52000 + 85000 } { ( 1 + 10.5 \% ) ^ { 3 } }
Evaluate
\frac{1400000000000}{10793861}\approx 129703.356380076
Factor
\frac{7 \cdot 2 ^ {12} \cdot 5 ^ {11}}{13 ^ {3} \cdot 17 ^ {3}} = 129703\frac{3846717}{10793861} = 129703.35638007567
Share
Copied to clipboard
\frac{90000+85000}{\left(1+\frac{10.5}{100}\right)^{3}}
Add 38000 and 52000 to get 90000.
\frac{175000}{\left(1+\frac{10.5}{100}\right)^{3}}
Add 90000 and 85000 to get 175000.
\frac{175000}{\left(1+\frac{105}{1000}\right)^{3}}
Expand \frac{10.5}{100} by multiplying both numerator and the denominator by 10.
\frac{175000}{\left(1+\frac{21}{200}\right)^{3}}
Reduce the fraction \frac{105}{1000} to lowest terms by extracting and canceling out 5.
\frac{175000}{\left(\frac{221}{200}\right)^{3}}
Add 1 and \frac{21}{200} to get \frac{221}{200}.
\frac{175000}{\frac{10793861}{8000000}}
Calculate \frac{221}{200} to the power of 3 and get \frac{10793861}{8000000}.
175000\times \frac{8000000}{10793861}
Divide 175000 by \frac{10793861}{8000000} by multiplying 175000 by the reciprocal of \frac{10793861}{8000000}.
\frac{1400000000000}{10793861}
Multiply 175000 and \frac{8000000}{10793861} to get \frac{1400000000000}{10793861}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}