Evaluate
\frac{19000\sqrt{1827641}}{1827641}\approx 14.054265543
Share
Copied to clipboard
\frac{380}{\sqrt{\left(\frac{5.36}{0.2}\right)^{2}+3.58^{2}}}
Add 2.1 and 3.26 to get 5.36.
\frac{380}{\sqrt{\left(\frac{536}{20}\right)^{2}+3.58^{2}}}
Expand \frac{5.36}{0.2} by multiplying both numerator and the denominator by 100.
\frac{380}{\sqrt{\left(\frac{134}{5}\right)^{2}+3.58^{2}}}
Reduce the fraction \frac{536}{20} to lowest terms by extracting and canceling out 4.
\frac{380}{\sqrt{\frac{17956}{25}+3.58^{2}}}
Calculate \frac{134}{5} to the power of 2 and get \frac{17956}{25}.
\frac{380}{\sqrt{\frac{17956}{25}+12.8164}}
Calculate 3.58 to the power of 2 and get 12.8164.
\frac{380}{\sqrt{\frac{1827641}{2500}}}
Add \frac{17956}{25} and 12.8164 to get \frac{1827641}{2500}.
\frac{380}{\frac{\sqrt{1827641}}{\sqrt{2500}}}
Rewrite the square root of the division \sqrt{\frac{1827641}{2500}} as the division of square roots \frac{\sqrt{1827641}}{\sqrt{2500}}.
\frac{380}{\frac{\sqrt{1827641}}{50}}
Calculate the square root of 2500 and get 50.
\frac{380\times 50}{\sqrt{1827641}}
Divide 380 by \frac{\sqrt{1827641}}{50} by multiplying 380 by the reciprocal of \frac{\sqrt{1827641}}{50}.
\frac{380\times 50\sqrt{1827641}}{\left(\sqrt{1827641}\right)^{2}}
Rationalize the denominator of \frac{380\times 50}{\sqrt{1827641}} by multiplying numerator and denominator by \sqrt{1827641}.
\frac{380\times 50\sqrt{1827641}}{1827641}
The square of \sqrt{1827641} is 1827641.
\frac{19000\sqrt{1827641}}{1827641}
Multiply 380 and 50 to get 19000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}