Evaluate
\frac{125}{14}\approx 8.928571429
Factor
\frac{5 ^ {3}}{2 \cdot 7} = 8\frac{13}{14} = 8.928571428571429
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)375}\\\end{array}
Use the 1^{st} digit 3 from dividend 375
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)375}\\\end{array}
Since 3 is less than 42, use the next digit 7 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)375}\\\end{array}
Use the 2^{nd} digit 7 from dividend 375
\begin{array}{l}\phantom{42)}00\phantom{4}\\42\overline{)375}\\\end{array}
Since 37 is less than 42, use the next digit 5 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{42)}00\phantom{5}\\42\overline{)375}\\\end{array}
Use the 3^{rd} digit 5 from dividend 375
\begin{array}{l}\phantom{42)}008\phantom{6}\\42\overline{)375}\\\phantom{42)}\underline{\phantom{}336\phantom{}}\\\phantom{42)9}39\\\end{array}
Find closest multiple of 42 to 375. We see that 8 \times 42 = 336 is the nearest. Now subtract 336 from 375 to get reminder 39. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }39
Since 39 is less than 42, stop the division. The reminder is 39. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}